INTRODUCTION TO MACHINE LEARNING






Introduction to Machine Learning

Alex Smola and S.V.N. Vishwanathan

Yahoo! Labs

Santa Clara
—and-—

Departments of Statistics and Computer Science
Purdue University
—and-—
College of Engineering and Computer Science
Australian National University




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcén 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
(© Cambridge University Press 2008
This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.
First published 2008
Printed in the United Kingdom at the University Press, Cambridge

Typeface Monotype Times 10/13pt  System INTEX 2 [ALEXANDER J. SMOLA AND S.V.N.
VISHWANATHAN]

A catalogue record for this book is available from the British Library
Library of Congress Cataloguing in Publication data available

ISBN 0 521 82583 0 hardback

AUTHOR: VISHY

REVISION: 256

TiMESTAMP: AucusT 30, 2011

URL: SVN://REPOS.STAT.PURDUE.EDU/THEBOOK /TRUNK/BOOK/THEBOOK.TEX



Contents

1 Introduction page vii
1.1 A Taste of Machine Learning vii
1.1.1  Applications vii
1.1.2 Data xi
1.1.3 Problems xiii
1.2 Probability Theory xvi
1.2.1 Random Variables xvi
1.2.2  Distributions xvii
1.2.3 Mean and Variance xix
1.2.4 Marginalization, Independence, Conditioning, and
Bayes Rule XX
1.3 Basic Algorithms xXxXiv
1.3.1 Naive Bayes XXV
1.3.2 Nearest Neighbor Estimators xxVviil
1.3.3 A Simple Classifier xXxXi
1.3.4 Perceptron xxxiii
1.3.5 K-Means XXXVi
Bibliography xli






Introduction

Over the past two decades Machine Learning has become one of the main-
stays of information technology and with that, a rather central, albeit usually
hidden, part of our life. With the ever increasing amounts of data becoming
available there is good reason to believe that smart data analysis will become
even more pervasive as a necessary ingredient for technological progress.
The purpose of this chapter is to provide the reader with an overview over
the vast range of applications which have at their heart a machine learning
problem and to bring some degree of order to the zoo of problems. After
that, we will discuss some basic tools from statistics and probability theory,
since they form the language in which many machine learning problems must
be phrased to become amenable to solving. Finally, we will outline a set of
fairly basic yet effective algorithms to solve an important problem, namely
that of classification. More sophisticated tools, a discussion of more general
problems and a detailed analysis will follow in later parts of the book.

1.1 A Taste of Machine Learning

Machine learning can appear in many guises. We now discuss a number of
applications, the types of data they deal with, and finally, we formalize the
problems in a somewhat more stylized fashion. The latter is key if we want to
avoid reinventing the wheel for every new application. Instead, much of the
art of machine learning is to reduce a range of fairly disparate problems to
a set of fairly narrow prototypes. Much of the science of machine learning is
then to solve those problems and provide good guarantees for the solutions.

1.1.1 Applications

Most readers will be familiar with the concept of web page ranking. That
is, the process of submitting a query to a search engine, which then finds
webpages relevant to the query and which returns them in their order of
relevance. See e.g. Figure 1.1 for an example of the query results for “ma-
chine learning”. That is, the search engine returns a sorted list of webpages
given a query. To achieve this goal, a search engine needs to ‘know’ which

vii
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Fig. 1.1. The 5 top scoring webpages for the query “machine learning”

pages are relevant and which pages match the query. Such knowledge can be
gained from several sources: the link structure of webpages, their content,
the frequency with which users will follow the suggested links in a query, or
from examples of queries in combination with manually ranked webpages.
Increasingly machine learning rather than guesswork and clever engineering
is used to automate the process of designing a good search engine | ]

A rather related application is collaborative filtering. Internet book-
stores such as Amazon, or video rental sites such as Netflix use this informa-
tion extensively to entice users to purchase additional goods (or rent more
movies). The problem is quite similar to the one of web page ranking. As
before, we want to obtain a sorted list (in this case of articles). The key dif-
ference is that an explicit query is missing and instead we can only use past
purchase and viewing decisions of the user to predict future viewing and
purchase habits. The key side information here are the decisions made by
similar users, hence the collaborative nature of the process. See Figure 1.2
for an example. It is clearly desirable to have an automatic system to solve
this problem, thereby avoiding guesswork and time | ].

An equally ill-defined problem is that of automatic translation of doc-
uments. At one extreme, we could aim at fully understanding a text before
translating it using a curated set of rules crafted by a computational linguist
well versed in the two languages we would like to translate. This is a rather
arduous task, in particular given that text is not always grammatically cor-
rect, nor is the document understanding part itself a trivial one. Instead, we
could simply use examples of translated documents, such as the proceedings
of the Canadian parliament or other multilingual entities (United Nations,
European Union, Switzerland) to learn how to translate between the two
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languages. In other words, we could use examples of translations to learn
how to translate. This machine learning approach proved quite successful
[BPXT07].

Many security applications, e.g. for access control, use face recognition as
one of its components. That is, given the photo (or video recording) of a
person, recognize who this person is. In other words, the system needs to
classify the faces into one of many categories (Alice, Bob, Charlie, ...) or
decide that it is an unknown face. A similar, yet conceptually quite different
problem is that of verification. Here the goal is to verify whether the person
in question is who he claims to be. Note that differently to before, this
is now a yes/no question. To deal with different lighting conditions, facial
expressions, whether a person is wearing glasses, hairstyle, etc., it is desirable
to have a system which learns which features are relevant for identifying a
person.

Another application where learning helps is the problem of named entity
recognition (see Figure 1.4). That is, the problem of identifying entities,
such as places, titles, names, actions, etc. from documents. Such steps are
crucial in the automatic digestion and understanding of documents. Some
modern e-mail clients, such as Apple’s Mail.app nowadays ship with the
ability to identify addresses in mails and filing them automatically in an
address book. While systems using hand-crafted rules can lead to satisfac-
tory results, it is far more efficient to use examples of marked-up documents
to learn such dependencies automatically, in particular if we want to de-
ploy our system in many languages. For instance, while ’bush’ and ’rice’

Customers Who Bought This Item Also Bought

The Elements of Statistical Pattern Classificati

Artificial Intelligence: assification (2nd  Data Mining: Practical
Modern Approach (2nd  Learning by T. Hastie Edition) by Richard O. Machine Learning Tools
Edition) (Prentice Hall Sefedche’s (25) $72.20 Duda

and Techniques, Second
tion (More

r Series in Artificial Sedscdes (25) $115.00
Intelligence) by Stuart Series in Data
oA’ (30) $60.50 Russell Management Systems) by
Sefcsciss (76) $115.00 Tan H. Witten
oA’ (21) $39.66

Fig. 1.2. Books recommended by Amazon.com when viewing Tom Mitchell’s Ma-
chine Learning Book [Mit97]. It is desirable for the vendor to recommend relevant
books which a user might purchase.

Fig. 1.3. 11 Pictures of the same person taken from the Yale face recognition
database. The challenge is to recognize that we are dealing with the same per-
son in all 11 cases.
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HAVANA (Reuters) - The European Union’s top development aid official
left Cuba on Sunday convinced that EU diplomatic sanctions against
the communist island should be dropped after Fidel Castro’s
retirement, his main aide said.

<TYPE="ORGANIZATION">HAVANA</> (<TYPE="ORGANIZATION">Reuters</>) - The
<TYPE="ORGANIZATION" >European Union</>’s top development aid official left
<TYPE="ORGANIZATION">Cuba</> on Sunday convinced that EU diplomatic sanctions
against the communist <TYPE="LOCATION">island</> should be dropped after
<TYPE="PERSON">Fidel Castro</>’s retirement, his main aide said.

Fig. 1.4. Named entity tagging of a news article (using LingPipe). The relevant
locations, organizations and persons are tagged for further information extraction.

are clearly terms from agriculture, it is equally clear that in the context of
contemporary politics they refer to members of the Republican Party.
Other applications which take advantage of learning are speech recog-
nition (annotate an audio sequence with text, such as the system shipping
with Microsoft Vista), the recognition of handwriting (annotate a sequence
of strokes with text, a feature common to many PDAs), trackpads of com-
puters (e.g. Synaptics, a major manufacturer of such pads derives its name
from the synapses of a neural network), the detection of failure in jet en-
gines, avatar behavior in computer games (e.g. Black and White), direct
marketing (companies use past purchase behavior to guesstimate whether
you might be willing to purchase even more) and floor cleaning robots (such
as iRobot’s Roomba). The overarching theme of learning problems is that
there exists a nontrivial dependence between some observations, which we
will commonly refer to as « and a desired response, which we refer to as y,
for which a simple set of deterministic rules is not known. By using learning
we can infer such a dependency between x and y in a systematic fashion.
We conclude this section by discussing the problem of classification,
since it will serve as a prototypical problem for a significant part of this
book. It occurs frequently in practice: for instance, when performing spam
filtering, we are interested in a yes/no answer as to whether an e-mail con-
tains relevant information or not. Note that this issue is quite user depen-
dent: for a frequent traveller e-mails from an airline informing him about
recent discounts might prove valuable information, whereas for many other
recipients this might prove more of an nuisance (e.g. when the e-mail relates
to products available only overseas). Moreover, the nature of annoying e-
mails might change over time, e.g. through the availability of new products
(Viagra, Cialis, Levitra, ... ), different opportunities for fraud (the Nigerian
419 scam which took a new twist after the Iraq war), or different data types
(e.g. spam which consists mainly of images). To combat these problems we
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Fig. 1.5. Binary classification; separate stars from diamonds. In this example we
are able to do so by drawing a straight line which separates both sets. We will see
later that this is an important example of what is called a linear classifier.

want to build a system which is able to learn how to classify new e-mails.
A seemingly unrelated problem, that of cancer diagnosis shares a common
structure: given histological data (e.g. from a microarray analysis of a pa-
tient’s tissue) infer whether a patient is healthy or not. Again, we are asked
to generate a yes/no answer given a set of observations. See Figure 1.5 for
an example.

1.1.2 Data

It is useful to characterize learning problems according to the type of data
they use. This is a great help when encountering new challenges, since quite
often problems on similar data types can be solved with very similar tech-
niques. For instance natural language processing and bioinformatics use very
similar tools for strings of natural language text and for DNA sequences.
Vectors constitute the most basic entity we might encounter in our work.
For instance, a life insurance company might be interesting in obtaining the
vector of variables (blood pressure, heart rate, height, weight, cholesterol
level, smoker, gender) to infer the life expectancy of a potential customer.
A farmer might be interested in determining the ripeness of fruit based on
(size, weight, spectral data). An engineer might want to find dependencies
in (voltage, current) pairs. Likewise one might want to represent documents
by a vector of counts which describe the occurrence of words. The latter is
commonly referred to as bag of words features.

One of the challenges in dealing with vectors is that the scales and units
of different coordinates may vary widely. For instance, we could measure the
height in kilograms, pounds, grams, tons, stones, all of which would amount
to multiplicative changes. Likewise, when representing temperatures, we
have a full class of affine transformations, depending on whether we rep-
resent them in terms of Celsius, Kelvin or Farenheit. One way of dealing
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with those issues in an automatic fashion is to normalize the data. We will
discuss means of doing so in an automatic fashion.

Lists: In some cases the vectors we obtain may contain a variable number
of features. For instance, a physician might not necessarily decide to perform
a full battery of diagnostic tests if the patient appears to be healthy.

Sets may appear in learning problems whenever there is a large number of
potential causes of an effect, which are not well determined. For instance, it is
relatively easy to obtain data concerning the toxicity of mushrooms. It would
be desirable to use such data to infer the toxicity of a new mushroom given
information about its chemical compounds. However, mushrooms contain a
cocktail of compounds out of which one or more may be toxic. Consequently
we need to infer the properties of an object given a set of features, whose
composition and number may vary considerably.

Matrices are a convenient means of representing pairwise relationships.
For instance, in collaborative filtering applications the rows of the matrix
may represent users whereas the columns correspond to products. Only in
some cases we will have knowledge about a given (user, product) combina-~
tion, such as the rating of the product by a user.

A related situation occurs whenever we only have similarity information
between observations, as implemented by a semi-empirical distance mea-
sure. Some homology searches in bioinformatics, e.g. variants of BLAST
[ |, only return a similarity score which does not necessarily satisfy
the requirements of a metric.

Images could be thought of as two dimensional arrays of numbers, that is,
matrices. This representation is very crude, though, since they exhibit spa-
tial coherence (lines, shapes) and (natural images exhibit) a multiresolution
structure. That is, downsampling an image leads to an object which has very
similar statistics to the original image. Computer vision and psychooptics
have created a raft of tools for describing these phenomena.

Video adds a temporal dimension to images. Again, we could represent
them as a three dimensional array. Good algorithms, however, take the tem-
poral coherence of the image sequence into account.

Trees and Graphs are often used to describe relations between collec-
tions of objects. For instance the ontology of webpages of the DMOZ project
(www.dmoz.org) has the form of a tree with topics becoming increasingly
refined as we traverse from the root to one of the leaves (Arts — Animation
— Anime — General Fan Pages — Official Sites). In the case of gene ontol-
ogy the relationships form a directed acyclic graph, also referred to as the
GO-DAG | ].

Both examples above describe estimation problems where our observations
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are vertices of a tree or graph. However, graphs themselves may be the
observations. For instance, the DOM-tree of a webpage, the call-graph of
a computer program, or the protein-protein interaction networks may form
the basis upon which we may want to perform inference.

Strings occur frequently, mainly in the area of bioinformatics and natural
language processing. They may be the input to our estimation problems, e.g.
when classifying an e-mail as spam, when attempting to locate all names of
persons and organizations in a text, or when modeling the topic structure
of a document. Equally well they may constitute the output of a system.
For instance, we may want to perform document summarization, automatic
translation, or attempt to answer natural language queries.

Compound structures are the most commonly occurring object. That
is, in most situations we will have a structured mix of different data types.
For instance, a webpage might contain images, text, tables, which in turn
contain numbers, and lists, all of which might constitute nodes on a graph of
webpages linked among each other. Good statistical modelling takes such de-
pendencies and structures into account in order to tailor sufficiently flexible
models.

1.1.3 Problems

The range of learning problems is clearly large, as we saw when discussing
applications. That said, researchers have identified an ever growing number
of templates which can be used to address a large set of situations. It is those
templates which make deployment of machine learning in practice easy and
our discussion will largely focus on a choice set of such problems. We now
give a by no means complete list of templates.

Binary Classification is probably the most frequently studied problem
in machine learning and it has led to a large number of important algorithmic
and theoretic developments over the past century. In its simplest form it
reduces to the question: given a pattern x drawn from a domain X, estimate
which value an associated binary random variable y € {£1} will assume.
For instance, given pictures of apples and oranges, we might want to state
whether the object in question is an apple or an orange. Equally well, we
might want to predict whether a home owner might default on his loan,
given income data, his credit history, or whether a given e-mail is spam or
ham. The ability to solve this basic problem already allows us to address a
large variety of practical settings.

There are many variants exist with regard to the protocol in which we are
required to make our estimation:
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Fig. 1.6. Left: binary classification. Right: 3-class classification. Note that in the
latter case we have much more degree for ambiguity. For instance, being able to
distinguish stars from diamonds may not suffice to identify either of them correctly,
since we also need to distinguish both of them from triangles.

e We might see a sequence of (x;, y;) pairs for which y; needs to be estimated
in an instantaneous online fashion. This is commonly referred to as online
learning.

e We might observe a collection X := {z1,... 2y} and Y := {y1,...ym} of
pairs (x;,y;) which are then used to estimate y for a (set of) so-far unseen
X' ={z{,...,!,}. This is commonly referred to as batch learning.

e We might be allowed to know X’ already at the time of constructing the
model. This is commonly referred to as transduction.

e We might be allowed to choose X for the purpose of model building. This
is known as active learning.

e We might not have full information about X, e.g. some of the coordinates
of the x; might be missing, leading to the problem of estimation with
missing variables.

e The sets X and X’ might come from different data sources, leading to the
problem of covariate shift correction.

e We might be given observations stemming from two problems at the same
time with the side information that both problems are somehow related.
This is known as co-training.

e Mistakes of estimation might be penalized differently depending on the
type of error, e.g. when trying to distinguish diamonds from rocks a very
asymmetric loss applies.

Multiclass Classification is the logical extension of binary classifica-
tion. The main difference is that now y € {1,...,n} may assume a range
of different values. For instance, we might want to classify a document ac-
cording to the language it was written in (English, French, German, Spanish,
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Fig. 1.7. Regression estimation. We are given a number of instances (indicated by
black dots) and would like to find some function f mapping the observations X to
R such that f(x) is close to the observed values.

Hindi, Japanese, Chinese, ... ). See Figure 1.6 for an example. The main dif-
ference to before is that the cost of error may heavily depend on the type of
error we make. For instance, in the problem of assessing the risk of cancer, it
makes a significant difference whether we mis-classify an early stage of can-
cer as healthy (in which case the patient is likely to die) or as an advanced
stage of cancer (in which case the patient is likely to be inconvenienced from
overly aggressive treatment).

Structured Estimation goes beyond simple multiclass estimation by
assuming that the labels y have some additional structure which can be used
in the estimation process. For instance, y might be a path in an ontology,
when attempting to classify webpages, y might be a permutation, when
attempting to match objects, to perform collaborative filtering, or to rank
documents in a retrieval setting. Equally well, y might be an annotation of
a text, when performing named entity recognition. Each of those problems
has its own properties in terms of the set of y which we might consider
admissible, or how to search this space. We will discuss a number of those
problems in Chapter ?7?.

Regression is another prototypical application. Here the goal is to esti-
mate a real-valued variable y € R given a pattern z (see e.g. Figure 1.7). For
instance, we might want to estimate the value of a stock the next day, the
yield of a semiconductor fab given the current process, the iron content of
ore given mass spectroscopy measurements, or the heart rate of an athlete,
given accelerometer data. One of the key issues in which regression problems
differ from each other is the choice of a loss. For instance, when estimating
stock values our loss for a put option will be decidedly one-sided. On the
other hand, a hobby athlete might only care that our estimate of the heart
rate matches the actual on average.

Novelty Detection is a rather ill-defined problem. It describes the issue
of determining “unusual” observations given a set of past measurements.
Clearly, the choice of what is to be considered unusual is very subjective.
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Fig. 1.8. Left: typical digits contained in the database of the US Postal Service.
Right: unusual digits found by a novelty detection algorithm [ ] (for a
description of the algorithm see Section ??). The score below the digits indicates
the degree of novelty. The numbers on the lower right indicate the class associated
with the digit.

A commonly accepted notion is that unusual events occur rarely. Hence a
possible goal is to design a system which assigns to each observation a rating
as to how novel it is. Readers familiar with density estimation might contend
that the latter would be a reasonable solution. However, we neither need a
score which sums up to 1 on the entire domain, nor do we care particularly
much about novelty scores for typical observations. We will later see how this
somewhat easier goal can be achieved directly. Figure 1.8 has an example of
novelty detection when applied to an optical character recognition database.

1.2 Probability Theory

In order to deal with the instances of where machine learning can be used, we
need to develop an adequate language which is able to describe the problems
concisely. Below we begin with a fairly informal overview over probability
theory. For more details and a very gentle and detailed discussion see the
excellent book of | ]

1.2.1 Random Variables

Assume that we cast a dice and we would like to know our chances whether
we would see 1 rather than another digit. If the dice is fair all six outcomes
X ={1,...,6} are equally likely to occur, hence we would see a 1 in roughly
1 out of 6 cases. Probability theory allows us to model uncertainty in the out-

come of such experiments. Formally we state that 1 occurs with probability
1

6.
In many experiments, such as the roll of a dice, the outcomes are of a
numerical nature and we can handle them easily. In other cases, the outcomes

may not be numerical, e.g., if we toss a coin and observe heads or tails. In
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these cases, it is useful to associate numerical values to the outcomes. This
is done via a random variable. For instance, we can let a random variable
X take on a value +1 whenever the coin lands heads and a value of —1
otherwise. Our notational convention will be to use uppercase letters, e.g.,
X, Y etc to denote random variables and lower case letters, e.g., z, y etc to
denote the values they take.

height

weight=

Fig. 1.9. The random variable £ maps from the set of outcomes of an experiment
(denoted here by X) to real numbers. As an illustration here X consists of the
patients a physician might encounter, and they are mapped via £ to their weight
and height.

1.2.2 D:istributions

Perhaps the most important way to characterize a random variable is to
associate probabilities with the values it can take. If the random variable is
discrete, i.e., it takes on a finite number of values, then this assignment of
probabilities is called a probability mass function or PMF for short. A PMF
must be, by definition, non-negative and must sum to one. For instance,
if the coin is fair, i.e., heads and tails are equally likely, then the random
variable X described above takes on values of +1 and —1 with probability
0.5. This can be written as

Pr(X =+1)=0.5 and Pr(X = —1) = 0.5. (1.1)

When there is no danger of confusion we will use the slightly informal no-
tation p(z) := Pr(X = x).

In case of a continuous random variable the assignment of probabilities
results in a probability density function or PDF for short. With some abuse
of terminology, but keeping in line with convention, we will often use density
or distribution instead of probability density function. As in the case of the
PMF, a PDF must also be non-negative and integrate to one. Figure 1.10
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Fig. 1.10. Two common densities. Left: uniform distribution over the interval
[—1,1]. Right: Normal distribution with zero mean and unit variance.

shows two distributions: the uniform distribution

B a
p(m)z{b—a fo€eb (1.2)

0 otherwise,

and the Gaussian distribution (also called normal distribution)

(@) = —— exp(—("”_“)g>. (1.3)

2mo? 202

Closely associated with a PDF is the indefinite integral over p. It is com-
monly referred to as the cumulative distribution function (CDF).

Definition 1.1 (Cumulative Distribution Function) For a real valued
random variable X with PDF p the associated Cumulative Distribution Func-
tion F' is given by

F(z'):=Pr{X <’} = /x dp(z). (1.4)

The CDF F(2') allows us to perform range queries on p efficiently. For
instance, by integral calculus we obtain

b
Pr(a < X <b) = / dp(x) = F(b) — F(a). (1.5)
The values of 2’ for which F(z') assumes a specific value, such as 0.1 or 0.5

have a special name. They are called the quantiles of the distribution p.

Definition 1.2 (Quantiles) Let ¢ € (0,1). Then the value of «’ for which
Pr(X < ') < q and Pr(X > 2') < 1— q is the g-quantile of the distribution
p. Moreover, the value x' associated with ¢ = 0.5 is called the median.
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>

Fig. 1.11. Quantiles of a distribution correspond to the area under the integral of
the density p(x) for which the integral takes on a pre-specified value. Illustrated
are the 0.1, 0.5 and 0.9 quantiles respectively.

1.2.3 Mean and Variance

A common question to ask about a random variable is what its expected
value might be. For instance, when measuring the voltage of a device, we
might ask what its typical values might be. When deciding whether to ad-
minister a growth hormone to a child a doctor might ask what a sensible
range of height should be. For those purposes we need to define expectations
and related quantities of distributions.

Definition 1.3 (Mean) We define the mean of a random variable X as

E[X] := /xdp(x) (1.6)

More generally, if f : R — R is a function, then f(X) is also a random
variable. Its mean is mean given by

E[f(X)] = / f(2)dp(z). (L.7)

Whenever X is a discrete random variable the integral in (1.6) can be re-
placed by a summation:

E[X] =) p(z). (1.8)

For instance, in the case of a dice we have equal probabilities of 1/6 for all
6 possible outcomes. It is easy to see that this translates into a mean of
(1424+3+4+5+6)/6 =3.5.

The mean of a random variable is useful in assessing expected losses and
benefits. For instance, as a stock broker we might be interested in the ex-
pected value of our investment in a year’s time. In addition to that, however,
we also might want to investigate the risk of our investment. That is, how
likely it is that the value of the investment might deviate from its expecta-
tion since this might be more relevant for our decisions. This means that we
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need a variable to quantify the risk inherent in a random variable. One such
measure is the variance of a random variable.

Definition 1.4 (Variance) We define the variance of a random variable
X as

Var[X] = E [(X - E[X])Q} . (1.9)
As before, if f: R — R is a function, then the variance of f(X) is given by
Varlf(X)] = E | (/(X) — B[f(X)])?]. (1.10)

The variance measures by how much on average f(X) deviates from its
expected value. As we shall see in Section 77, an upper bound on the variance
can be used to give guarantees on the probability that f(X) will be within
€ of its expected value. This is one of the reasons why the variance is often
associated with the risk of a random variable. Note that often one discusses
properties of a random variable in terms of its standard deviation, which is
defined as the square root of the variance.

1.2.4 Marginalization, Independence, Conditioning, and Bayes
Rule

Given two random variables X and Y, one can write their joint density

p(z,y). Given the joint density, one can recover p(z) by integrating out y.

This operation is called marginalization:

p(x) = / dp(z, ). (1.11)
Yy

If Y is a discrete random variable, then we can replace the integration with
a summation:

p(x) = plx,y). (1.12)

We say that X and Y are independent, i.e., the values that X takes does
not depend on the values that Y takes whenever

p(z,y) = p(x)p(y). (1.13)

Independence is useful when it comes to dealing with large numbers of ran-
dom variables whose behavior we want to estimate jointly. For instance,
whenever we perform repeated measurements of a quantity, such as when
measuring the voltage of a device, we will typically assume that the individ-
ual measurements are drawn from the same distribution and that they are
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Fig. 1.12. Left: a sample from two dependent random variables. Knowing about
first coordinate allows us to improve our guess about the second coordinate. Right:
a sample drawn from two independent random variables, obtained by randomly
permuting the dependent sample.

independent of each other. That is, having measured the voltage a number
of times will not affect the value of the next measurement. We will call such
random variables to be independently and identically distributed, or in short,
11d random variables. See Figure 1.12 for an example of a pair of random
variables drawn from dependent and independent distributions respectively.

Conversely, dependence can be vital in classification and regression prob-
lems. For instance, the traffic lights at an intersection are dependent of each
other. This allows a driver to perform the inference that when the lights are
green in his direction there will be no traffic crossing his path, i.e. the other
lights will indeed be red. Likewise, whenever we are given a picture x of a
digit, we hope that there will be dependence between x and its label y.

Especially in the case of dependent random variables, we are interested
in conditional probabilities, i.e., probability that X takes on a particular
value given the value of Y. Clearly Pr(X = rain|Y = cloudy) is higher than
Pr(X = rain|Y = sunny). In other words, knowledge about the value of Y’
significantly influences the distribution of X. This is captured via conditional
probabilities:

p(z,y)
ply)

Equation 1.14 leads to one of the key tools in statistical inference.

p(aly) = (1.14)

Theorem 1.5 (Bayes Rule) Denote by X and Y random variables then
the following holds

p(ylz) = p(x;‘?g;(y)~ (1.15)
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This follows from the fact that p(x,y) = p(z|y)p(y) = p(y|x)p(z). The key
consequence of (1.15) is that we may reverse the conditioning between a
pair of random variables.

1.2.4.1 An Ezxample

We illustrate our reasoning by means of a simple example — inference using
an AIDS test. Assume that a patient would like to have such a test carried
out on him. The physician recommends a test which is guaranteed to detect
HIV-positive whenever a patient is infected. On the other hand, for healthy
patients it has a 1% error rate. That is, with probability 0.01 it diagnoses
a patient as HIV-positive even when he is, in fact, HIV-negative. Moreover,
assume that 0.15% of the population is infected.

Now assume that the patient has the test carried out and the test re-
turns "HIV-negative’. In this case, logic implies that he is healthy, since the
test has 100% detection rate. In the converse case things are not quite as
straightforward. Denote by X and T the random variables associated with
the health status of the patient and the outcome of the test respectively. We
are interested in p(X = HIV+|T = HIV+). By Bayes rule we may write

p(T = HIV+|X = HIV+)p(X = HIV+)
p(T = HIV+)

p(X = HIV4|T = HIV+) =

While we know all terms in the numerator, p(T' = HIV+) itself is unknown.
That said, it can be computed via

p(T = HIV+) = > p(T =HIV+,z2)
e {HIV+,HIV-}

= Z p(T = HIV+|z)p(z)
c€{HIV+,HIV-}
=1.0-0.0015 4 0.01 - 0.9985.

Substituting back into the conditional expression yields
1.0-0.0015
X =HIVH|T = HIV+) = = (0.1306.
o * ) = 10-0.0015 + 0.01 - 0.9985

In other words, even though our test is quite reliable, there is such a low

prior probability of having been infected with AIDS that there is not much
evidence to accept the hypothesis even after this test.

Let us now think how we could improve the diagnosis. One way is to ob-
tain further information about the patient and to use this in the diagnosis.
For instance, information about his age is quite useful. Suppose the patient
is 35 years old. In this case we would want to compute p(X = HIV+|T =
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Fig. 1.13. A graphical description of our HIV testing scenario. Knowing the age of
the patient influences our prior on whether the patient is HIV positive (the random
variable X). The outcomes of the tests 1 and 2 are independent of each other given
the status X. We observe the shaded random variables (age, test 1, test 2) and
would like to infer the un-shaded random variable X. This is a special case of a
graphical model which we will discuss in Chapter ?7.

HIV+, A = 35) where the random variable A denotes the age. The corre-
sponding expression yields:
p(T = HIV+|X = HIV+, A)p(X = HIV+|A)
p(T = HIV+|A)

Here we simply conditioned all random variables on A in order to take addi-
tional information into account. We may assume that the test is independent
of the age of the patient, i.e.

p(tlz, a) = p(t|z).

What remains therefore is p(X = HIV+|A). Recent US census data pegs this
number at approximately 0.9%. Plugging all data back into the conditional
expression yields % = 0.48. What has happened here is that
by including additional observed random variables our estimate has become
more reliable. Combination of evidence is a powerful tool. In our case it
helped us make the classification problem of whether the patient is HIV-
positive or not more reliable.

A second tool in our arsenal is the use of multiple measurements. After
the first test the physician is likely to carry out a second test to confirm the
diagnosis. We denote by T and T (and t;,t9 respectively) the two tests.
Obviously, what we want is that T5 will give us an “independent” second
opinion of the situation. In other words, we want to ensure that T> does
not make the same mistakes as T7. For instance, it is probably a bad idea
to repeat T without changes, since it might perform the same diagnostic
mistake as before. What we want is that the diagnosis of T is independent
of that of T, given the health status X of the patient. This is expressed as

p(t1, ta|x) = p(ti|x)p(ta|z). (1.16)
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See Figure 1.13 for a graphical illustration of the setting. Random variables
satisfying the condition (1.16) are commonly referred to as conditionally
independent. In shorthand we write 71,75 1L X. For the sake of the argument
we assume that the statistics for 75 are given by

p(ta|z) x=HIV- z=HIV+
to = HIV- 095 0.01
to = HIV+ 0.05 0.99

Clearly this test is less reliable than the first one. However, we may now
combine both estimates to obtain a very reliable estimate based on the
combination of both events. For instance, for t; = t9 = HIV+ we have

B 1.0-0.99 - 0.009 B
~ 1.0-0.99-0.009 + 0.01-0.05-0.991
In other words, by combining two tests we can now confirm with very high

confidence that the patient is indeed diseased. What we have carried out is a
combination of evidence. Strong experimental evidence of two positive tests

p(X = HIV+|Ty = HIV+, T, = HIV+) 0.95.

effectively overcame an initially very strong prior which suggested that the
patient might be healthy.

Tests such as in the example we just discussed are fairly common. For
instance, we might need to decide which manufacturing procedure is prefer-
able, which choice of parameters will give better results in a regression es-
timator, or whether to administer a certain drug. Note that often our tests
may not be conditionally independent and we would need to take this into
account.

1.3 Basic Algorithms

We conclude our introduction to machine learning by discussing four simple
algorithms, namely Naive Bayes, Nearest Neighbors, the Mean Classifier,
and the Perceptron, which can be used to solve a binary classification prob-
lem such as that described in Figure 1.5. We will also introduce the K-means
algorithm which can be employed when labeled data is not available. All
these algorithms are readily usable and easily implemented from scratch in
their most basic form.

For the sake of concreteness assume that we are interested in spam filter-
ing. That is, we are given a set of m e-mails x;, denoted by X := {x1, ..., 2y}
and associated labels y;, denoted by Y := {y1,...,ym}. Here the labels sat-
isfy y; € {spam,ham}. The key assumption we make here is that the pairs
(x4,y;) are drawn jointly from some distribution p(x,y) which represents
the e-mail generating process for a user. Moreover, we assume that there
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From: "LucindaParkison497072" <LucindaParkison497072@hotmail.com>

To: <kargr@earthlink.net>

Subject: we think ACGU is our next winner

Date: Mon, 25 Feb 2008 00:01:01 -0500

MIME-Version: 1.0

X-OriginalArrivalTime: 25 Feb 2008 05:01:01.0329 (UTC) FILETIME=[6A931810:01C8776B]
Return-Path: lucindaparkison497072@hotmail.com

(ACGU) .045 UP 104.5%

I do think that (ACGU) at it’s current levels looks extremely attractive.

Asset Capital Group, Inc., (ACGU) announced that it is expanding the marketing of bio-remediation fluids and cleaning equipment. After
its recent acquisition of interest in American Bio-Clean Corporation and an 80

News is expected to be released next week on this growing company and could drive the price even higher. Buy (ACGU) Monday at open. I
believe those involved at this stage could enjoy a nice ride up.

Fig. 1.14. Example of a spam e-mail

z1: The quick brown fox jumped over the lazy dog.
z2: The dog hunts a fox.

the quick brown fox jumped over 1lazy dog hunts a

Ty 2 1 1 1 1 1 1 1 0 0
T2 1 0 0 1 0 0 0 1 1 1

Fig. 1.15. Vector space representation of strings.

is sufficiently strong dependence between x and y that we will be able to
estimate y given x and a set of labeled instances X, Y.

Before we do so we need to address the fact that e-mails such as Figure 1.14
are text, whereas the three algorithms we present will require data to be
represented in a wvectorial fashion. One way of converting text into a vector
is by using the so-called bag of words representation | , |. In its
simplest version it works as follows: Assume we have a list of all possible
words occurring in X, that is a dictionary, then we are able to assign a unique
number with each of those words (e.g. the position in the dictionary). Now
we may simply count for each document z; the number of times a given
word j is occurring. This is then used as the value of the j-th coordinate
of x;. Figure 1.15 gives an example of such a representation. Once we have
the latter it is easy to compute distances, similarities, and other statistics
directly from the vectorial representation.

1.3.1 Naive Bayes

In the example of the AIDS test we used the outcomes of the test to infer
whether the patient is diseased. In the context of spam filtering the actual
text of the e-mail x corresponds to the test and the label y is equivalent to
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the diagnosis. Recall Bayes Rule (1.15). We could use the latter to infer

2 = Pely)py)
p(ylz) @)

We may have a good estimate of p(y), that is, the probability of receiving
a spam or ham mail. Denote by mpam and mgpam the number of ham and
spam e-mails in X. In this case we can estimate

Mspam

p(ham) ~ Mham nd p(spam) ~

The key problem, however, is that we do not know p(z|y) or p(x). We may
dispose of the requirement of knowing p(z) by settling for a likelihood ratio

p(ham|z) — p(z/ham)p(ham)

L(z) = p(spam|z) _ p(x|spam)p(spam) (1.17)

Whenever L(x) exceeds a given threshold ¢ we decide that z is spam and
consequently reject the e-mail. If ¢ is large then our algorithm is conservative
and classifies an email as spam only if p(spam|z) > p(ham|z). On the other
hand, if ¢ is small then the algorithm aggressively classifies emails as spam.

The key obstacle is that we have no access to p(z|y). This is where we make
our key approximation. Recall Figure 1.13. In order to model the distribution
of the test outcomes T} and 75 we made the assumption that they are
conditionally independent of each other given the diagnosis. Analogously,
we may now treat the occurrence of each word in a document as a separate
test and combine the outcomes in a naive fashion by assuming that

# of words in x

paly) = [ ey, (118)

j=1

where w’ denotes the j-th word in document z. This amounts to the as-
sumption that the probability of occurrence of a word in a document is
independent of all other words given the category of the document. Even
though this assumption does not hold in general —for instance, the word
“York” is much more likely to after the word “New” —it suffices for our
purposes (see Figure 1.16).

This assumption reduces the difficulty of knowing p(z|y) to that of esti-
mating the probabilities of occurrence of individual words w. Estimates for
p(wly) can be obtained, for instance, by simply counting the frequency oc-
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Fig. 1.16. Naive Bayes model. The occurrence of individual words is independent
of each other, given the category of the text. For instance, the word Viagra is fairly
frequent if y = spam but it is considerably less frequent if y = ham, except when
considering the mailbox of a Pfizer sales representative.

currence of the word within documents of a given class. That is, we estimate

£ T .
Z;il Z}%:(i words in x; {yz = spam and wi = w}

ST STy = spam}

p(w|spam) =

Here {y, = spam and wg = w} equals 1 if and only if z; is labeled as spam
and w occurs as the j-th word in x;. The denominator is simply the total
number of words in spam documents. Similarly one can compute p(w|ham).
In principle we could perform the above summation whenever we see a new
document x. This would be terribly inefficient, since each such computation
requires a full pass through X and Y. Instead, we can perform a single pass
through X and Y and store the resulting statistics as a good estimate of
the conditional probabilities. Algorithm 1 has details of an implementation.
Note that we performed a number of optimizations: Firstly, the normaliza-
tion by mgzam
porate it as a fixed offset. Secondly, since we are computing a product over

-1 . .. .
and my, respectively is independent of x, hence we incor-

a large number of factors the numbers might lead to numerical overflow or
underflow. This can be addressed by summing over the logarithm of terms
rather than computing products. Thirdly, we need to address the issue of
estimating p(w|y) for words w which we might not have seen before. One
way of dealing with this is to increment all counts by 1. This method is
commonly referred to as Laplace smoothing. We will encounter a theoretical
justification for this heuristic in Section ?7?.

This simple algorithm is known to perform surprisingly well, and variants
of it can be found in most modern spam filters. It amounts to what is
commonly known as “Bayesian spam filtering”. Obviously, we may apply it
to problems other than document categorization, too.
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Algorithm 1 Naive Bayes
Train(X,Y) {reads documents X and labels Y}
Compute dictionary D of X with n words.

Compute m, mpam and Mgpam.
Initialize b := log c+log myam — log Mspam to offset the rejection threshold
Initialize p € R?*"™ with Pij = 1, Wspam = N, Wham = N.
{Count occurrence of each word}
{Here :cf denotes the number of times word j occurs in document z;}
for i =1tom do
if y; = spam then
for j=1ton do
poj < poj+a]
Wspam — Wspam + 7
end for
else
for j=1ton do
prj P+
Wham $ Wham + l'{
end for
end if
end for
{Normalize counts to yield word probabilities}
for j =1tondo
Po,j < Po,j /wspam
P1j ¢ P1,j/Wham
end for
Classify(z) {classifies document x}
Initialize score threshold t = —b
for j=1tondo
t < t+ 27 (log po,; — log p1;)
end for
if t > 0 return spam else return ham

1.3.2 Nearest Neighbor Estimators

An even simpler estimator than Naive Bayes is nearest neighbors. In its most
basic form it assigns the label of its nearest neighbor to an observation x
(see Figure 1.17). Hence, all we need to implement it is a distance measure
d(x,z") between pairs of observations. Note that this distance need not even
be symmetric. This means that nearest neighbor classifiers can be extremely
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Fig. 1.17. 1 nearest neighbor classifier. Depending on whether the query point z is
closest to the star, diamond or triangles, it uses one of the three labels for it.

4

=2 -1 0 1 2 3 4 5

Fig. 1.18. k-Nearest neighbor classifiers using Euclidean distances. Left: decision
boundaries obtained from a 1-nearest neighbor classifier. Middle: color-coded sets
of where the number of red / blue points ranges between 7 and 0. Right: decision
boundary determining where the blue or red dots are in the majority.

flexible. For instance, we could use string edit distances to compare two
documents or information theory based measures.

However, the problem with nearest neighbor classification is that the esti-
mates can be very noisy whenever the data itself is very noisy. For instance,
if a spam email is erroneously labeled as nonspam then all emails which
are similar to this email will share the same fate. See Figure 1.18 for an
example. In this case it is beneficial to pool together a number of neighbors,
say the k-nearest neighbors of x and use a majority vote to decide the class
membership of x. Algorithm 2 has a description of the algorithm. Note that
nearest neighbor algorithms can yield excellent performance when used with
a good distance measure. For instance, the technology underlying the Netflix
progress prize [BIX07] was essentially nearest neighbours based.

Note that it is trivial to extend the algorithm to regression. All we need
to change in Algorithm 2 is to return the average of the values y; instead of
their majority vote. Figure 1.19 has an example.

Note that the distance computation d(x;,z) for all observations can be-
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Algorithm 2 k-Nearest Neighbor Classification
Classify(X,Y,z) {reads documents X, labels Y and query z}
for i =1tom do
Compute distance d(x;, )
end for

Compute set I containing indices for the k smallest distances d(x;, ).
return majority label of {y; where i € I}.

Fig. 1.19. k-Nearest neighbor regression estimator using Euclidean distances. Left:
some points (z,y) drawn from a joint distribution. Middle: 1-nearest neighbour
classifier. Right: 7-nearest neighbour classifier. Note that the regression estimate is
much more smooth.

come extremely costly, in particular whenever the number of observations is
large or whenever the observations x; live in a very high dimensional space.

Random projections are a technique that can alleviate the high computa-
tional cost of Nearest Neighbor classifiers. A celebrated lemma by Johnson
and Lindenstrauss | | asserts that a set of m points in high dimensional
Euclidean space can be projected into a O(logm/e?) dimensional Euclidean
space such that the distance between any two points changes only by a fac-
tor of (1 £ €). Since Euclidean distances are preserved, running the Nearest
Neighbor classifier on this mapped data yields the same results but at a
lower computational cost [ ]-

The surprising fact is that the projection relies on a simple randomized
algorithm: to obtain a d-dimensional representation of n-dimensional ran-
dom observations we pick a matrix R € R¥™ where each element is drawn
independently from a normal distribution with n~2 variance and zero mean.
Multiplying  with this projection matrix can be shown to achieve this prop-
erty with high probability. For details see [ ]
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Fig. 1.20. A trivial classifier. Classification is carried out in accordance to which of
the two means p_ or p4 is closer to the test point z. Note that the sets of positive
and negative labels respectively form a half space.

1.3.3 A Simple Classifier

We can use geometry to design another simple classification algorithm | ]
for our problem. For simplicity we assume that the observations z € R?, such
as the bag-of-words representation of e-mails. We define the means p4 and
f— to correspond to the classes y € {£1} via

Here we used m_ and m4 to denote the number of observations with label
y; = —1 and y; = 41 respectively. An even simpler approach than using the
nearest neighbor classifier would be to use the class label which corresponds
to the mean closest to a new query z, as described in Figure 1.20.

For Euclidean distances we have

lue —2l® = u_|? + o> = 2 {u_,z) and (1.19)
i =2l = el + |21 = 2 s ) (1.20)
Here (-, -) denotes the standard dot product between vectors. Taking differ-
ences between the two distances yields
2
I

=2 — g, + P — Il
(1.21)

f(@) = s —2)* = lln- —

This is a linear function in z and its sign corresponds to the labels we esti-
mate for x. Our algorithm sports an important property: The classification
rule can be expressed via dot products. This follows from

2 — _
I ? = (g gy =mi® > (wiyzg) and (py,z) =m' > (z;,3).
yi=y;=1 yi=1
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Fig. 1.21. The feature map ¢ maps observations = from X into a feature space H.
The map ¢ is a convenient way of encoding pre-processing steps systematically.

Analogous expressions can be computed for y_. Consequently we may ex-
press the classification rule (1.21) as

m

f@) = ai(wiz)+b (1.22)

i=1

where b = m~? Zyi:yj:—l (4, 25) —m7> Zy,-:yjzl (i, xj) and o = y;/my,.

This offers a number of interesting extensions. Recall that when dealing
with documents we needed to perform pre-processing to map e-mails into a
vector space. In general, we may pick arbitrary maps ¢ : X — H mapping
the space of observations into a feature space H, as long as the latter is
endowed with a dot product (see Figure 1.21). This means that instead of
dealing with (z,2’) we will be dealing with (¢(x), p(x')).

As we will see in Chapter 7?7, whenever H is a so-called Reproducing
Kernel Hilbert Space, the inner product can be abbreviated in the form of
a kernel function k(x,z") which satisfies

k(x,2') := <gb(m), ¢(x’)>. (1.23)

This small modification leads to a number of very powerful algorithm and
it is at the foundation of an area of research called kernel methods. We
will encounter a number of such algorithms for regression, classification,
segmentation, and density estimation over the course of the book. Examples
of suitable k are the polynomial kernel k(z,2’) = (x, x/>d for d € N and the
Gaussian RBF kernel k(x,2') = e~ llz=a'I” for v > 0.

The upshot of (1.23) is that our basic algorithm can be kernelized. That
is, we may rewrite (1.21) as

m

fl@) = aik(zi,x) +b (1.24)

=1

where as before a; = y;/my, and the offset b is computed analogously. As
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Algorithm 3 The Perceptron
Perceptron(X,Y) {reads stream of observations (z;,v;)}
Initialize w =0 and b =0
while There exists some (x;,y;) with y;((w, z;) +b) <0 do
w4 w+ y;x; and b < b+ y;
end while

Algorithm 4 The Kernel Perceptron

KernelPerceptron(X,Y) {reads stream of observations (z;,v;)}
Initialize f =0
while There exists some (z;,y;) with y; f(z;) <0 do
fe £t ikl ) +
end while

a consequence we have now moved from a fairly simple and pedestrian lin-
ear classifier to one which yields a nonlinear function f(x) with a rather
nontrivial decision boundary.

1.3.4 Perceptron

In the previous sections we assumed that our classifier had access to a train-
ing set of spam and non-spam emails. In real life, such a set might be difficult
to obtain all at once. Instead, a user might want to have instant results when-
ever a new e-mail arrives and he would like the system to learn immediately
from any corrections to mistakes the system makes.

To overcome both these difficulties one could envisage working with the
following protocol: As emails arrive our algorithm classifies them as spam or
non-spam, and the user provides feedback as to whether the classification is
correct or incorrect. This feedback is then used to improve the performance
of the classifier over a period of time.

This intuition can be formalized as follows: Our classifier maintains a
parameter vector. At the ¢-th time instance it receives a data point x;, to
which it assigns a label g; using its current parameter vector. The true label
y; is then revealed, and used to update the parameter vector of the classifier.
Such algorithms are said to be online. We will now describe perhaps the
simplest classifier of this kind namely the Perceptron | , ].

Let us assume that the data points z; € RY and labels y; € {£1}. As
before we represent an email as a bag-of-words vector and we assign +1 to
spam emails and —1 to non-spam emails. The Perceptron maintains a weight
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Fig. 1.22. The Perceptron without bias. Left: at time ¢ we have a weight vector w;
denoted by the dashed arrow with corresponding separating plane (also dashed).
For reference we include the linear separator w* and its separating plane (both
denoted by a solid line). As a new observation z; arrives which happens to be
mis-classified by the current weight vector w; we perform an update. Also note the
margin between the point x; and the separating hyperplane defined by w*. Right:
This leads to the weight vector wy4; which is more aligned with w*.

vector w € R? and classifies x; according to the rule
0 = sign{(w, ;) + b}, (1.25)

where (w, ;) denotes the usual Euclidean dot product and b is an offset. Note
the similarity of (1.25) to (1.21) of the simple classifier. Just as the latter,
the Perceptron is a linear classifier which separates its domain R? into two
halfspaces, namely {z|(w,z) + b > 0} and its complement. If g, = y; then
no updates are made. On the other hand, if ¢, # y; the weight vector is
updated as

w < w~+ Yy and b < b+ y;. (1.26)

Figure 1.22 shows an update step of the Perceptron algorithm. For simplicity
we illustrate the case without bias, that is, where b = 0 and where it remains
unchanged. A detailed description of the algorithm is given in Algorithm 3.

An important property of the algorithm is that it performs updates on w
by multiples of the observations x; on which it makes a mistake. Hence we
may express w as w = y . p.o. Yil;. Just as before, we can replace z; and x
by ¢(x;) and ¢(x) to obtain a kernelized version of the Perceptron algorithm
[ ] (Algorithm 4).

If the dataset (X,Y) is linearly separable, then the Perceptron algorithm
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eventually converges and correctly classifies all the points in X. The rate of
convergence however depends on the margin. Roughly speaking, the margin
quantifies how linearly separable a dataset is, and hence how easy it is to
solve a given classification problem.

Definition 1.6 (Margin) Let w € R? be a weight vector and let b € R be
an offset. The margin of an observation x € R? with associated label y is

v(x,y) =y ((w,x) +b). (1.27)
Moreover, the margin of an entire set of observations X with labels Y is

(X, Y) = miin’y(x,;,yi). (1.28)

Geometrically speaking (see Figure 1.22) the margin measures the distance
of x from the hyperplane defined by {z|(w,x) + b = 0}. Larger the margin,
the more well separated the data and hence easier it is to find a hyperplane
with correctly classifies the dataset. The following theorem asserts that if
there exists a linear classifier which can classify a dataset with a large mar-
gin, then the Perceptron will also correctly classify the same dataset after
making a small number of mistakes.

Theorem 1.7 (Novikoff’s theorem) Let (X,Y) be a dataset with at least
one example labeled +1 and one example labeled —1. Let R := maxy ||z¢||, and

assume that there exists (w*,b*) such that ||w*|| =1 and v := y({(w*, x¢) +
2 *\2
b*) > ~ for all t. Then, the Perceptron will make at most (HR)A(Y#

mistakes.

This result is remarkable since it does not depend on the dimensionality
of the problem. Instead, it only depends on the geometry of the setting,
as quantified via the margin v and the radius R of a ball enclosing the
observations. Interestingly, a similar bound can be shown for Support Vector
Machines [ ] which we will be discussing in Chapter ?7?.

Proof We can safely ignore the iterations where no mistakes were made
and hence no updates were carried out. Therefore, without loss of generality
assume that the t-th update was made after seeing the ¢-th observation and
let w; denote the weight vector after the update. Furthermore, for simplicity
assume that the algorithm started with wg = 0 and by = 0. By the update
equation (1.26) we have

(W, ") + bb™ = (w1, W*) 4+ 10" + ye((x, w*) + b*)
> (w1, w") + bp_1b" + 7.
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By induction it follows that (w¢, w*)+b:b* > t7. On the other hand we made
an update because y;((z¢, wi—1) + bi—1) < 0. By using yyr = 1,
lwel|* + 07 = Nt || + b7y + 97 lll® + 1+ 2ye((wimr, ) + be—1)
< wema|® + 0y + 2| + 1
Since ||z¢||* = R? we can again apply induction to conclude that |jwy||*+b? <

t [R2 + 1}. Combining the upper and the lower bounds, using the Cauchy-
Schwartz inequality, and ||w*|| = 1 yields

s3] 5]
Rt

< VHR2 + 1)1+ (b%)2
Squaring both sides of the inequality and rearranging the terms yields an
upper bound on the number of updates and hence the number of mistakes. B

The Perceptron was the building block of research on Neural Networks
[ , ]. The key insight was to combine large numbers of such net-
works, often in a cascading fashion, to larger objects and to fashion opti-
mization algorithms which would lead to classifiers with desirable properties.
In this book we will take a complementary route. Instead of increasing the
number of nodes we will investigate what happens when increasing the com-
plexity of the feature map ¢ and its associated kernel k. The advantage of
doing so is that we will reap the benefits from convex analysis and linear
models, possibly at the expense of a slightly more costly function evaluation.

1.3.5 K-Means

All the algorithms we discussed so far are supervised, that is, they assume
that labeled training data is available. In many applications this is too much
to hope for; labeling may be expensive, error prone, or sometimes impossi-
ble. For instance, it is very easy to crawl and collect every page within the
www.purdue.edu domain, but rather time consuming to assign a topic to
each page based on its contents. In such cases, one has to resort to unsuper-
vised learning. A prototypical unsupervised learning algorithm is K-means,
which is clustering algorithm. Given X = {z1,...,z,,} the goal of K-means
is to partition it into k clusters such that each point in a cluster is similar
to points from its own cluster than with points from some other cluster.
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Towards this end, define prototype vectors uq,...,ur and an indicator
vector r;; which is 1 if, and only if, x; is assigned to cluster j. To cluster our
dataset we will minimize the following distortion measure, which minimizes
the distance of each point from the prototype vector:

m k
1
J(r,p) = §erz‘jllwz‘ — %, (1.29)

i=1 j=1

where 7 = {r;;}, p = {p;}, and | - ||* denotes the usual Euclidean square
norm.
Our goal is to find r and p, but since it is not easy to jointly minimize J

with respect to both r and p, we will adapt a two stage strategy:

Stage 1 Keep the p fixed and determine r. In this case, it is easy to see
that the minimization decomposes into m independent problems.
The solution for the i-th data point x; can be found by setting:
rij = 1if j = argmin ||z; — py|?, (1.30)
i
and 0 otherwise.
Stage 2 Keep the r fixed and determine p. Since the r’s are fixed, J is an
quadratic function of . It can be minimized by setting the derivative
with respect to p; to be 0:
m
Zﬂ'j(%’ — ;) = 0 for all j. (1.31)
i=1

Rearranging obtains

i Tij i
= =——. (1.32)
T i
Since ), r;; counts the number of points assigned to cluster j, we are
essentially setting j; to be the sample mean of the points assigned
to cluster j.

The algorithm stops when the cluster assignments do not change signifi-
cantly. Detailed pseudo-code can be found in Algorithm 5.

Two issues with K-Means are worth noting. First, it is sensitive to the
choice of the initial cluster centers u. A number of practical heuristics have
been developed. For instance, one could randomly choose k points from the
given dataset as cluster centers. Other methods try to pick k points from X
which are farthest away from each other. Second, it makes a hard assignment
of every point to a cluster center. Variants which we will encounter later in
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Algorithm 5 K-Means
Cluster(X) {Cluster dataset X}
Initialize cluster centers p; for j = 1,...,k randomly
repeat
for i =1 tom do
Compute j' = argmin;_y . d(z;, p15)
Set Tijr = 1 and Tij = 0 for all j/ 75]

end for
forjzltok:doZ
Compute p; = &2t
end for ’ B
until Cluster assignments r;; are unchanged
return {p1,...,u,} and ry;

the book will relax this. Instead of letting r;; € {0,1} these soft variants
will replace it with the probability that a given x; belongs to cluster j.

The K-Means algorithm concludes our discussion of a set of basic machine
learning methods for classification and regression. They provide a useful
starting point for an aspiring machine learning researcher. In this book we
will see many more such algorithms as well as connections between these
basic algorithms and their more advanced counterparts.

Problems

Problem 1.1 (Eyewitness) Assume that an eyewitness is 90% certain
that a given person committed a crime in a bar. Moreover, assume that
there were 50 people in the restaurant at the time of the crime. What is the
posterior probability of the person actually having committed the crime.

Problem 1.2 (DNA Test) Assume the police have a DNA library of 10
million records. Moreover, assume that the false recognition probability is
below 0.00001% per record. Suppose a match is found after a database search
for an individual. What are the chances that the identification is correct? You
can assume that the total population is 100 million people. Hint: compute
the probability of no match occurring first.

Problem 1.3 (Bomb Threat) Suppose that the probability that one of a
thousand passengers on a plane has a bomb is 1 :1,000,000. Assuming that
the probability to have a bomb is evenly distributed among the passengers,
the probability that two passengers have a bomb is roughly equal to 10712,
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Therefore, one might decide to take a bomb on a plane to decrease chances
that somebody else has a bomb. What is wrong with this argument?

Problem 1.4 (Monty-Hall Problem) Assume that in a TV show the
candidate is given the choice between three doors. Behind two of the doors
there is a pencil and behind one there is the grand prize, a car. The candi-
date chooses one door. After that, the showmaster opens another door behind
which there is a pencil. Should the candidate switch doors after that? What
is the probability of winning the car?

Problem 1.5 (Mean and Variance for Random Variables) Denote by
X, random variables. Prove that in this case

EX17---XN [Z JIZ] = ZEXZ[‘TZ] and Vaer,._,XN [Z 331] = ZV&I‘XZ.[.TZ‘]

To show the second equality assume independence of the X;.

Problem 1.6 (Two Dices) Assume you have a game which uses the maz-
imum of two dices. Compute the probability of seeing any of the events
{1,...,6}. Hint: prove first that the cumulative distribution function of the
mazimum of a pair of random variables is the square of the original cumu-
lative distribution function.

Problem 1.7 (Matching Coins) Consider the following game: two play-
ers bring a coin each. the first player bets that when tossing the coins both
will match and the second one bets that they will not match. Show that even
if one of the players were to bring a tainted coin, the game still would be
fair. Show that it is in the interest of each player to bring a fair coin to the
game. Hint: assume that the second player knows that the first coin favors
heads over tails.

Problem 1.8 (Randomized Maximization) How many observations do
you need to draw from a distribution to ensure that the mazximum over them
is larger than 95% of all observations with at least 95% probability? Hint:
generalize the result from Problem 1.6 to the mazimum over n random vari-
ables.
Application: Assume we have 1000 computers performing MapReduce [

and the Reducers have to wait until all 1000 Mappers are finished with their
job. Compute the quantile of the typical time to completion.

Problem 1.9 Prove that the Normal distribution (1.3) has mean p and
variance o®. Hint: exploit the fact that p is symmetric around .

/
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Problem 1.10 (Cauchy Distribution) Prove that for the density
B 1
- om(1+22)

mean and variance are undefined. Hint: show that the integral diverges.

p(z) (1.33)

Problem 1.11 (Quantiles) Find a distribution for which the mean ex-
ceeds the median. Hint: the mean depends on the value of the high-quantile
terms, whereas the median does not.

Problem 1.12 (Multicategory Naive Bayes) Prove that for multicate-
gory Naive Bayes the optimal decision is given by

n

y' (@) = argznaxp(y) [Ip(ilily) (1.34)
i=1

where y € Y is the class label of the observation x.
Problem 1.13 (Bayes Optimal Decisions) Denote by y*(z) = argmax, p(y|x)

the label associated with the largest conditional class probability. Prove that
for y*(x) the probability of choosing the wrong label y is given by

l(z) :=1—p(y"(z)|z).

Moreover, show that y*(x) is the label incurring the smallest misclassification
error.

Problem 1.14 (Nearest Neighbor Loss) Show that the expected loss in-
curred by the nearest neighbor classifier does not exceed twice the loss of the
Bayes optimal decision.
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