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1

Online Learning and Boosting

So far the learning algorithms we considered assumed that all the training

data is available before building a model for predicting labels on unseen data

points. In many modern applications data is available only in a streaming

fashion, and one needs to predict labels on the fly. To describe a concrete

example, consider the task of spam filtering. As emails arrive the learning

algorithm needs to classify them as spam or ham. Tasks such as these are

tackled via online learning. Online learning proceeds in rounds. At each

round a training example is revealed to the learning algorithm, which uses

its current model to predict the label. The true label is then revealed to

the learner which incurs a loss and updates its model based on the feedback

provided. This protocol is summarized in Algorithm 1.1. The goal of online

learning is to minimize the total loss incurred. By an appropriate choice

of labels and loss functions, this setting encompasses a large number of

tasks such as classification, regression, and density estimation. In our spam

detection example, if an email is misclassified the user can provide feedback

which is used to update the spam filter, and the goal is to minimize the

number of misclassified emails.

1.1 Halving Algorithm

The halving algorithm is conceptually simple, yet it illustrates many of the

concepts in online learning. Suppose we have access to a set of n experts,

that is, functions fi which map from the input space X to the output space

Y = {±1}. Furthermore, assume that one of the experts is consistent, that

is, there exists a j ∈ {1, . . . , n} such that fj(xt) = yt for t = 1, . . . , T . The

halving algorithm maintains a set Ct of consistent experts at time t. Initially

C0 = {1, . . . , n}, and it is updated recursively as

Ct+1 = {i ∈ Ct s.t. fi(xt+1) = yt+1} . (1.1)

The prediction on a new data point is computed via a majority vote amongst

the consistent experts: ŷt = majority(Ct).

Lemma 1.1 The Halving algorithm makes at most log2(n) mistakes.

vi



1.2 Weighted Majority vii

Algorithm 1.1 Protocol of Online Learning

1: for t = 1, . . . , T do do

2: Get training instance xt
3: Predict label ŷt
4: Get true label yt
5: Incur loss l(ŷt, xt, yt)

6: Update model

7: end for

Proof Let M denote the total number of mistakes. The halving algorithm

makes a mistake at iteration t if at least half the consistent experts Ct predict

the wrong label. This in turn implies that

|Ct+1| ≤
|Ct|
2
≤ |C0|

2M
=

n

2M
.

On the other hand, since one of the experts is consistent it follows that

1 ≤ |Ct+1|. Therefore, 2M ≤ n. Solving for M completes the proof.

1.2 Weighted Majority

We now turn to the scenario where none of the experts is consistent. There-

fore, the aim here is not to minimize the number mistakes but to minimize

regret.

1.3 Stochastic Mirror Descent

In this section we will consider optimization algorithms for solving the fol-

lowing problem:

min
w∈Ω

J(w) where J(w) =
T∑
t=1

ft(w). (1.2)

Suppose we have access to a function ψ which is continuously differentiable

and strongly convex with modulus of strong convexity σ > 0 (see Section

?? for definition of strong convexity), then we can define the Bregman di-

vergence (??) corresponding to ψ as

∆ψ(w,w′) = ψ(w)− ψ(w′)−
〈
w − w′,∇ψ(w′)

〉
.
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Algorithm 1.2 Stochastic Mirror Descent

1: Input: Initial point w1, maximum iterations T

2: for t = 1, . . . , T do

3: Compute ŵt+1 = ∇ψ∗ (∇ψ(wt)− ηtgt) with gt := ∂wft(wt)

4: Set wt+1 = Pψ,Ω (ŵt+1)

5: end for

6: Return: wT+1

We can also generalize the orthogonal projection (??) by replacing the square

Euclidean norm with the above Bregman divergence:

Pψ,Ω(w′) = argmin
w∈Ω

∆ψ(w,w′). (1.3)

Denote w∗ = Pψ,Ω(w′). Just like the Euclidean distance is non-expansive, the

Bregman projection can also be shown to be non-expansive in the following

sense:

∆ψ(w,w′) ≥ ∆ψ(w,w∗) + ∆ψ(w∗, w′) (1.4)

for all w ∈ Ω. The diameter of Ω as measured by ∆ψ is given by

diamψ(Ω) = max
w,w′∈Ω

∆ψ(w,w′). (1.5)

For the rest of this chapter we will make the following standard assumptions:

• Each ft is convex and revealed at time instance t.

• Ω is a closed convex subset of Rn with non-empty interior.

• The diameter diamψ(Ω) of Ω is bounded by F <∞.

• The set of optimal solutions of (1.2) denoted by Ω∗ is non-empty.

• The subgradient ∂wft(w) can be computed for every t and w ∈ Ω.

• The Bregman projection (1.3) can be computed for every w′ ∈ Rn.

• The gradient ∇ψ, and its inverse (∇ψ)−1 = ∇ψ∗ can be computed.

The method we employ to solve (1.2) is given in Algorithm 1.2. Before

analyzing the performance of the algorithm we would like to discuss three

special cases. First, Euclidean distance squared which recovers projected

stochastic gradient descent, second Entropy which recovers Exponentiated

gradient descent, and third the p-norms for p > 2 which recovers the p-norm

Perceptron. BUGBUG TODO.

Our key result is Lemma 1.3 given below. It can be found in various guises

in different places most notably Lemma 2.1 and 2.2 in [Ned02], Theorem 4.1

and Eq. (4.21) and (4.15) in [BT03], in the proof of Theorem 1 of [Zin03], as
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well as Lemma 3 of [SSS07]. We prove a slightly general variant; we allow for

projections with an arbitrary Bregman divergence and also take into account

a generalized version of strong convexity of ft. Both these modifications will

allow us to deal with general settings within a unified framework.

Definition 1.2 We say that a convex function f is strongly convex with

respect to another convex function ψ with modulus λ if

f(w)− f(w′)−
〈
w − w′, µ

〉
≥ λ∆ψ(w,w′) for all µ ∈ ∂f(w′). (1.6)

The usual notion of strong convexity is recovered by setting ψ(·) = 1
2 ‖·‖

2.

Lemma 1.3 Let ft be strongly convex with respect to ψ with modulus λ ≥ 0

for all t. For any w ∈ Ω the sequences generated by Algorithm 1.2 satisfy

∆ψ(w,wt+1) ≤ ∆ψ(w,wt)− ηt 〈gt, wt − w〉+
η2
t

2σ
‖gt‖2 (1.7)

≤ (1− ηtλ)∆ψ(w,wt)− ηt(ft(wt)− ft(w)) +
η2
t

2σ
‖gt‖2 . (1.8)

Proof We prove the result in three steps. First we upper bound ∆ψ(w,wt+1)

by ∆ψ(w, ŵt+1). This is a consequence of (1.4) and the non-negativity of the

Bregman divergence which allows us to write

∆ψ(w,wt+1) ≤ ∆ψ(w, ŵt+1). (1.9)

In the next step we use Lemma ?? to write

∆ψ(w,wt) + ∆ψ(wt, ŵt+1)−∆ψ(w, ŵt+1) = 〈∇ψ(ŵt+1)−∇ψ(wt), w − wt〉 .

Since ∇ψ∗ = (∇ψ)−1, the update in step 3 of Algorithm 1.2 can equivalently

be written as ∇ψ(ŵt+1) − ∇ψ(wt) = −ηtgt. Plugging this in the above

equation and rearranging

∆ψ(w, ŵt+1) = ∆ψ(w,wt)− ηt 〈gt, wt − w〉+ ∆ψ(wt, ŵt+1). (1.10)

Finally we upper bound ∆ψ(wt, ŵt+1). For this we need two observations:

First, 〈x, y〉 ≤ 1
2σ ‖x‖

2 + σ
2 ‖y‖

2 for all x, y ∈ Rn and σ > 0. Second, the σ

strong convexity of ψ allows us to bound ∆ψ(ŵt+1, wt) ≥ σ
2 ‖wt − ŵt+1‖2.
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Using these two observations

∆ψ(wt, ŵt+1) = ψ(wt)− ψ(ŵt+1)− 〈∇ψ(ŵt+1), wt − ŵt+1〉
= −(ψ(ŵt+1)− ψ(wt)− 〈∇ψ(wt), ŵt+1 − wt〉) + 〈ηtgt, wt − ŵt+1〉
= −∆ψ(ŵt+1, wt) + 〈ηtgt, wt − ŵt+1〉

≤ −σ
2
‖wt − ŵt+1‖2 +

η2
t

2σ
‖gt‖2 +

σ

2
‖wt − ŵt+1‖2

=
η2
t

2σ
‖gt‖2 . (1.11)

Inequality (1.7) follows by putting together (1.9), (1.10), and (1.11), while

(1.8) follows by using (1.6) with f = ft and w′ = wt and substituting into

(1.7).

Now we are ready to prove regret bounds.

Lemma 1.4 Let w∗ ∈ Ω∗ denote the best parameter chosen in hindsight,

and let ‖gt‖ ≤ L for all t. Then the regret of Algorithm 1.2 can be bounded

via

T∑
t=1

ft(wt)− ft(w∗) ≤ F
(

1

ηT
− Tλ

)
+
L2

2σ

T∑
t=1

ηt. (1.12)

Proof Set w = w∗ and rearrange (1.8) to obtain

ft(wt)− ft(w∗) ≤
1

ηt
((1− ληt)∆ψ(w∗, wt)−∆ψ(w∗, wt+1)) +

ηt
2σ
‖gt‖2 .

Summing over t

T∑
t=1

ft(wt)− ft(w∗) ≤
T∑
t=1

1

ηt
((1− ηtλ)∆ψ(w∗, wt)−∆ψ(w∗, wt+1))︸ ︷︷ ︸

T1

+

T∑
t=1

ηt
2σ
‖gt‖2︸ ︷︷ ︸

T2

.

Since the diameter of Ω is bounded by F and ∆ψ is non-negative

T1 =

(
1

η1
− λ
)

∆ψ(w∗, w1)− 1

ηT
∆ψ(w∗, wT+1) +

T∑
t=2

∆ψ(w∗, wt)

(
1

ηt
− 1

ηt−1
− λ

)

≤
(

1

η1
− λ
)

∆ψ(w∗, w1) +
T∑
t=2

∆ψ(w∗, wt)

(
1

ηt
− 1

ηt−1
− λ

)

≤
(

1

η1
− λ
)
F +

T∑
t=2

F

(
1

ηt
− 1

ηt−1
− λ

)
= F

(
1

ηT
− Tλ

)
.
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On the other hand, since the subgradients are Lipschitz continuous with

constant L it follows that

T2 ≤
L2

2σ

T∑
t=1

ηt.

Putting together the bounds for T1 and T2 yields (1.12).

Corollary 1.5 If λ > 0 and we set ηt = 1
λt then

T∑
t=1

ft(xt)− ft(x∗) ≤
L2

2σλ
(1 + log(T )),

On the other hand, when λ = 0, if we set ηt = 1√
t

then

T∑
t=1

ft(xt)− ft(x∗) ≤
(
F +

L2

σ

)√
T .

Proof First consider λ > 0 with ηt = 1
λt . In this case 1

ηT
= Tλ, and

consequently (1.12) specializes to

T∑
t=1

ft(wt)− ft(w∗) ≤
L2

2σλ

T∑
t=1

1

t
≤ L2

2σλ
(1 + log(T )).

When λ = 0, and we set ηt = 1√
t

and use problem 1.2 to rewrite (1.12) as

T∑
t=1

ft(wt)− ft(w∗) ≤ F
√
T +

L2

σ

T∑
t=1

1

2
√
t
≤ F
√
T +

L2

σ

√
T .

1.3.1 Dealing with Composite Objective Functions

Next we consider algorithms for solving the following so-called composite

problem:

min
w∈Ω

J(w) + r(w) where J(w) =
T∑
t=1

ft(w), (1.13)

and r(w) is a simple to evaluate regularizer. For instance, r(w) = ‖w‖2

or r(w) = ‖w‖21 etc. We will operate under the same assumptions as in
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Algorithm 1.3 Stochastic Mirror Descent for Composite Functions

1: Input: Initial point w1, maximum iterations T

2: for t = 1, . . . , T do

3: Compute ŵt+1 = argminw ηt 〈gt, w〉 + ηr(w) + ∆ψ(w,wt) with gt :=

∂wft(wt)

4: Set wt+1 = Pψ,Ω (ŵt+1)

5: end for

6: Return: wT+1

the previous sub-section. The algorithm that we will employ is given in

Algorithm 1.3. Note that Algorithm 1.2 is recovered as a special case when

r(w) = 0. Now we prove the analog of Lemma 1.3 for composite functions.

Lemma 1.6 Let ft be strongly convex with respect to ψ with modulus λ ≥ 0

for all t. For any w ∈ Ω the sequences generated by Algorithm 1.2 satisfy

∆ψ(w,wt+1) ≤ ∆ψ(w,wt)− ηt 〈gt, wt − w〉 − ηt 〈∇r(wt+1), wt+1 − w〉+
η2
t

2σ
‖gt‖2

(1.14)

≤ (1− ηtλ)∆ψ(w,wt)− ηt(ft(wt)− ft(w))− ηt(r(wt+1)− r(w)) +
η2
t

2σ
‖gt‖2 .

(1.15)

Proof We prove the result in three steps. First we upper bound ∆ψ(w,wt+1)

by ∆ψ(w, ŵt+1). This is a consequence of (1.4) and the non-negativity of the

Bregman divergence which allows us to write

∆ψ(w,wt+1) ≤ ∆ψ(w, ŵt+1). (1.16)

In the next step we use Lemma ?? to write

∆ψ(w,wt) + ∆ψ(wt, ŵt+1)−∆ψ(w, ŵt+1) = 〈∇ψ(ŵt+1)−∇ψ(wt), w − wt〉 .

Since ∇ψ∗ = (∇ψ)−1, the update in step 3 of Algorithm 1.3 can equivalently

be written as ∇ψ(ŵt+1) − ∇ψ(wt) = −ηtgt − ηt∇r(wt+1). Plugging this in

the above equation and rearranging

∆ψ(w, ŵt+1) = ∆ψ(w,wt)− ηt 〈gt, wt − w〉 − ηt 〈∇r(wt+1), wt − w〉+ ∆ψ(wt, ŵt+1).

(1.17)

Finally we upper bound ∆ψ(wt, ŵt+1). For this we need two observations:

First, 〈x, y〉 ≤ 1
2σ ‖x‖

2 + σ
2 ‖y‖

2 for all x, y ∈ Rn and σ > 0. Second, the σ

strong convexity of ψ allows us to bound ∆ψ(ŵt+1, wt) ≥ σ
2 ‖wt − ŵt+1‖2.
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Using these two observations

∆ψ(wt, ŵt+1) = ψ(wt)− ψ(ŵt+1)− 〈∇ψ(ŵt+1), wt − ŵt+1〉
= −(ψ(ŵt+1)− ψ(wt)− 〈∇ψ(wt), ŵt+1 − wt〉)

+ 〈ηtgt, wt − ŵt+1〉+ ηt 〈∇r(wt+1), wt − ŵt+1〉
= −∆ψ(ŵt+1, wt) + 〈ηtgt, wt − ŵt+1〉+ ηt 〈∇r(wt+1), wt − ŵt+1〉

≤ −σ
2
‖wt − ŵt+1‖2 +

η2
t

2σ
‖gt‖2 +

σ

2
‖wt − ŵt+1‖2 + ηt 〈∇r(wt+1), wt − ŵt+1〉

=
η2
t

2σ
‖gt‖2 + ηt 〈∇r(wt+1), wt − ŵt+1〉 . (1.18)

Inequality (1.14) follows by putting together (1.16), (1.17), (1.18), and sim-

plifying while (1.15) follows by using (1.6) with f = ft and w′ = wt and

substituting into (1.14).

Problems

Problem 1.1 (Generalized Cauchy-Schwartz {1}) Show that 〈x, y〉 ≤
1

2σ ‖x‖
2 + σ

2 ‖y‖
2 for all x, y ∈ Rn and σ > 0.

Problem 1.2 (Bounding sum of a series {1}) Show that
∑b

t=a
1

2
√
t
≤

√
b− a+ 1. Hint: Upper bound the sum by an integral.
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