
Communication System Design: https://www.kth.se/social/course/IK2200/ 

Communication System Design 
Projects 

KUNGLIGA TEKNISKA HÖGSKOLAN 

PROFESSOR: DEJAN KOSTIC  

TEACHING ASSISTANT:  GEORGIOS KATSIKAS  



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Traditional Vs. Modern 
Network Management 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

What is Network Management (NM)? 
 A set of actions performed by network administrators in order to maintain 
the wellness of the network. 

 Common networking problems: 
 Hardware: 

 e.g. Malfunctioning device/cable 

 or mostly Software: 
 e.g. Interface/service/daemon is down 

 Common NM actions: 
 Hardware: 

  e.g. Replace malfunctioning device/cable 

 Software: 
 e.g. Configure and/or restart interface/service/daemon 

26/08/2014 3 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Traditional NM Approach 

Cisco API 
Set A 

Start A 

Juniper API 
Set B 

Start B 

Each device in a traditional 
network implements its own 
logic (algorithm + forwarding 

actions) 

26/08/2014 4 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Applications – Drive the Controller 

SDN Controller - Decisions 

Dataplane   
Simple Forwarding 

Modern NM Approach 

SDN Protocol - Signaling 

Firewall 
Load 

Balancing 
Routing NAT 

Software Defined Networking 
• Keep the SW simple. 
• Separate control from 

dataplane. 
• Controller and SW 

communicate over a 
protocol (e.g. OpenFlow). 

• Controller takes the 
decisions. 

• Switches install the rules 
dictated by the controller. 

26/08/2014 5 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Modern NM Approach 

Firewall 
Load 

Balancing 
Routing NAT 

OpenFlow SDN Protocol 

SW1 

SW1 • Firewall 

SW4 • LB 

SW7 
• NAT 

• Routing 

Processes 

SW4 

SW7 

What if a SW fails? 
How can we 

guarantee network 
stability?  

Need for redundancy 
Restarting apps may 

cause inconsistencies. 

26/08/2014 6 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Modern NM Approach 

  

  

    

OpenFlow SDN Protocol 

Server 
Network Functions Virtualization 
• Routing, FW, LB, NAT are now VMs running 

in the cloud. 
• Easy instantiation, management and 

migration. 
• SDN + NFV form the networks of 

tomorrow. 

26/08/2014 7 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

SDN & NFV 
Leading Activities 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Global IT Concensous 

26/08/2014 9 of 30 

* Figures taken from [3] 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

SDN 

OpenDaylight Virtualization 
Edition 

Language Java 

Platform Eclipse & OSGi 

26/08/2014 10 of 30 

* Figure taken from [3] 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

NFV 

OpenStack Networking 

Language Python, Bash 

Platform 
REST OpenStack 
Neutron 

26/08/2014 11 of 30 

* Figure taken from [4] 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

SDN + NFV 

26/08/2014 12 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

SDN + NFV 

DevStack 

Fedora 20 all-in-one VM released 

26/08/2014 13 of 30 

* Figure taken from [5] 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

SDN + NFV 
Workflow to follow 

Abstract physical topology by creating high-level Virtual Tenant Networks 
(OpenStack Nodes) 

Instantiate VMs into OpenStack nodes 

Applications run in VMs and call OpenStack Networking API through REST 

OpenStack then talks to OpenDaylight to configure the real switches 

Two GUIs: OpenStack for virtual and OpenDaylight for physical network 

26/08/2014 14 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Project #1 - MODL 
DISTRIBUTED MONITORING EVENT AGGREGATION & MANAGEMENT 
FOR SDN. 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Distributed Monitoring Event 
Aggregation & Management for SDN 

Problem 
 Current SDN environments constrict their monitoring capabilities towards 

gathering packet and byte counters from the dataplane as well as several QoS 
metrics (OF 1.3). 

 Motivation 
 To obtain the real network view and plan network management we need more 

precise information that reveals the state of each device in the network. 

 Approach 
 Install distributed, lightweight monitoring modules across all the devices of an 

SDN topology and gather statistics for: 
  bandwidth, dropped packets, RTTs (per switch-to-controller), 
  overused/underused links, PL indicators from slices, expired TTLs, 
  logged data to OS from protocols/switches/routers, 
  CPU/Memory/TCAM/cache/NIC and per port usage statistics for switches. 

26/08/2014 16 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Distributed Monitoring Event 
Aggregation & Management for SDN 

Task 
 Implement the distributed monitoring in C++ and make it controller 

agnostic using REST API.  

 Focus on the performance of the ecosystem (light and fast).  

 OpenDaylight [3] will be favored as the basic controller.  

 Develop side tools on the controller side (Extending ODL GUI) to effectively 
project the information. 

 Required skills 
 C++, Java, Advanced Networking, Linux, Web Services, Web GUI, SQL, 

mininet network emulator, Wireshark, OpenDaylight, SDN principles. 
 

26/08/2014 17 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Mininet v2.1+ 
Stanford Mininet Topo 

Distributed Monitoring Event 
Aggregation & Management for SDN 

Controller 

REST 
API 

Network Box Packet 
Inspector 

Traffic Generation 
Module 

SQL DB to store all 
the aggregated info 

Extend ODL GUI to 
project the 
information 

26/08/2014 18 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Distributed Monitoring Event 
Aggregation & Management for SDN 

Specific details 
 OpenDaylight Hydrogen [3] should be downloaded and installed. 

 Mininet [1] will emulate the network devices. Stanford backbone network will be the testbed [7].  

 Restful API (WS) will be used to push info from switches to the controller. 

 Linux /proc, networking, process and HW management will be used to gather the statistics. 

 SQL (MySQL) will be used to store the aggregated information (controller side) for being pre-
processed by other modules later on. 

 A packet inspection module must also be implemented. The module should be instructed to capture 
the packets of a given network box (from every interface), correlate them in pairs (incoming-outgoing 
packets) and highlight the way they are modified by the box. Appropriate results will be stored to 
database tables as well. 

Packet generation modules will be implemented so as to stress the network under different 
conditions and gather information from all the devices for an extended period. Standard mininet tools 
(iperf, netcat, ping) can be used and D-ITG [8] traffic generator. 

ODL web-based GUI will be enhanced to project the gathered information. A page should host the 
events/alerts that the network administrator should take into account (e.g. congested devices/links, 
etc.) and another one will host the monitoring statistics. 

26/08/2014 19 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Project #2 – V-NM 
NETWORK MANAGEMENT USING NFV  



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Network Management Using NFV 
Problem 

  To date, when a new service enters the market, operators have to install and deploy new 
infrastructure across the network. The majority of this infrastructure is manually 
customized to fit the purpose and can be hardly reconfigured with the danger to harm the 
service/network consistency/availability. 

 Motivation 
  Eliminate box-by-box configuration to reduce network complexity, OPEX/CAPEX costs, 

increase network programmability, accelerate time to market for new services. 

 Approach 
 Implement several, critical network functions in a virtualized environment (NFV/Network 

as a Service). 

 Abstract a physical topology using Virtual Tenant Networks to meet your clients’ needs and 
develop failover mechanisms to enhance network resiliency. 

 Run various scenarios on this virtual topology to highlight the importance of your 
functions. 

26/08/2014 21 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Network Management Using NFV 
Task 

 You are a network operator and you have 3 big companies as clients that want to run 
services on your network (mininet). 

 Use DevStack framework to provide SDN and NFV capabilities. 
 Implement 5  basic network functions (Firewall, Load Balancer, Tunneling/Slicing with 

security flavors, L3 Routing and NAT, Monitoring/Metering) as virtual OpenStack Neutron 
applications that can be dynamically instantiated and chained in a virtual network topology. 

 Investigate several event families that are present in today’s networks and can be 
addressed with the above NFs. The purpose is to re-use NFs across all your clients. 

 Run 3 big scenarios that showcase how you isolate your clients (and guarantee certain QoS 
and security for each), how you handle traffic in different load scenarios and how you deal 
with errors (propose redundant solutions). 

 Implement a side module able to inject traffic in the network and stress your Network 
Functions as well. 

 Requirements 
 Java, Python, Bash, Advanced Networking, Fedora Linux, Web Services, Web GUI, mininet 

network emulator, Wireshark, OpenDaylight, OpenStack, SDN/NFV principles. 

26/08/2014 22 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Virtual Tenant Networks 

Network Management Using NFV 

Mininet v2.1+ 
Stanford Mininet Topo 

Controller 

Traffic Generation 
Module 

Extend DevStack 
GUI 

NFV 

Firewall LB Routing VLAN 

26/08/2014 23 of 30 

Event generator 

Monitor 

3 Scenarios 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Network Management Using NFV 
Specific details 

 Mininet [1] will emulate the network devices. Stanford topology will be the testbed [7].  

 Fedora 20 based all-in-one VM comes with OpenDaylight Virtualization edition [3], 
OpenStack Neutron [4], OpenVSwitch. You need at least three nodes, one for control (runs 
both ODL and OpenStack controllers) and another two for compute (host VMs). 

 Five Network Functions [5] [6]: 

 Load Balancer as a Service. Ability to run per flow or per packet hashing. 

 Firewall as a Service module with certain functionality (rules) to be proposed. Each 
VTN will have its own Firewall rules (in/out). 

 Virtual Private Network as a service for slicing resources (QoS) and security (IPSec). 

 L3 networking and NAT capabilities. 

 A packet generation module will be implemented so as to stress the network under 
different conditions. Μininet tools (iperf, netcat, ping) can be used and D-ITG [8] traffic 
generator. 

26/08/2014 24 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Network Management Using NFV 
Specific details 
Hint: The nature of the requested network functions will lead you design 

the scenarios. 

 ODL and OpenStack web-based GUIs will be used (and enhanced when 
needed) to visualize the results. 

26/08/2014 25 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

Big Idea 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

Big Idea 

 The two projects use ODL as basic framework. Coincidence?? 

 Project 1 ultimately inspects and projects every single detail of the physical topology. 
This information can be used to assess the network state. 

 Project 2 can use this information to detect problems and decide how to fine tune 
the network policy by instantiating/migrating remedy actions (e.g. when part of the 
network is suddenly congested a LB service can be deployed,  QoS guarantees for 
certain clients). 

 More details about each project will follow soon… 

Proj1 Proj2 ?? 

26/08/2014 27 of 30 



Communication System Design: https://www.kth.se/social/course/IK2200/ 

References 



Communication System Design: https://www.kth.se/social/course/IK2200/ Communication System Design: https://www.kth.se/social/course/IK2200/ 

References 
1) Mininet Network Emulator: http://mininet.org/ 

2) OpenFlow: https://www.opennetworking.org/sdn-resources/onf-
specifications/openflow/ 

3) OpenDaylight Hydrogen: http://www.opendaylight.org/ 

4) OpenStack Cloud Software: http://www.openstack.org/ 

5) OpenStack Networking API: http://developer.openstack.org/api-ref-networking-v2.html 

6) OpenStack Networking API extensions: http://docs.openstack.org/api/openstack-
network/2.0/content/API_extensions.html 

7) Mininet Stanford Backbone: 
http://reproducingnetworkresearch.wordpress.com/2012/07/11/atpg/ 

8) Distributed Internet Traffic Generator: http://traffic.comics.unina.it/software/ITG/ 

26/08/2014 29 of 30 

http://mininet.org/
http://mininet.org/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow/
http://www.opendaylight.org/
http://www.opendaylight.org/
http://www.openstack.org/
http://www.openstack.org/
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2.html
http://developer.openstack.org/api-ref-networking-v2.html
http://docs.openstack.org/api/openstack-network/2.0/content/API_extensions.html
http://docs.openstack.org/api/openstack-network/2.0/content/API_extensions.html
http://docs.openstack.org/api/openstack-network/2.0/content/API_extensions.html
http://docs.openstack.org/api/openstack-network/2.0/content/API_extensions.html
http://reproducingnetworkresearch.wordpress.com/2012/07/11/atpg/
http://reproducingnetworkresearch.wordpress.com/2012/07/11/atpg/
http://traffic.comics.unina.it/software/ITG/
http://traffic.comics.unina.it/software/ITG/


Communication System Design: https://www.kth.se/social/course/IK2200/ 


