
26/08/2014

1

Automatic Failure Recovery 
for OpenFlow (AFRO)

Project 3
Maciej Kuźniar (maciej.kuzniar@epfl.ch)

Network Failures

www.kth.se

S
D

2



26/08/2014

2

SDN Failures

www.kth.se

S
D

SDN controllers can route traffic along 

non shortest-paths [B4, SIGCOMM ‘13]

SDN controller has to be 

involved during recovery

3

Failure Recovery in Controllers

www.kth.se

Difficult Error prone
Time 

consuming

Abstraction of a network that never fails

Solution:

Decouple failure recovery and application logic

4



26/08/2014

3

Never failing network - intuition

www.kth.se

t0 time

S0

tf

Sf

S0

5

Automatic Failure Recovery for OpenFlow
(AFRO)

www.kth.se

t0 time

S0 AFRO S’

tf

Sf

Ctrl

Events

Replay + Propagate 6

C
lo

n
e

 to
 

is
o

la
tio

n
 



26/08/2014

4

Project overview

• Implement AFRO as a layer below the controller

• Test the implementation in a network emulator

• Evaluate performance 

www.kth.se 7

AFRO as a proxy

• AFRO is a layer between switches and controller

• Intercepts communication

• Can remove or add messages

• Implement as a transparent proxy in C++

• Use existing libraries to (de)serialize messages

– oflib by CPqD (OF 1.3)

– Flowgrammable (OF 1.0 – 1.4)

– Controllers like NOX

www.kth.se 8



26/08/2014

5

AFRO - modules

• State tracking – event recording

• Failure detection

• State computation 

• Network reconfiguration

• Parallel network emulation

www.kth.se 9

State tracking

• Intercept

• (PacketIn) events coming from switches

• Messages going to switches

• Filter and store relevant events

• events coming from switches at network edge

• Expire events that are no longer relevant

• Many flows are short

• Remove event if a flow installed in response to this 
event is no longer in the network

www.kth.se 10



26/08/2014

6

Failure detection

• Use OpenFlow messages

• Port Status message

• Switch disconnecting

www.kth.se 11

State computation

• Replay events in an emulated environment

• Start a copy of the controller in a fresh state

• Create an emulated network copy

– Build switch models or reuse existing software 

switches (references at the end)

• Inject events to the emulator and let them 

propagate

www.kth.se 12



26/08/2014

7

Replay

• Order of events should reflect the order in original 

network

• When an event was processed?

• Requires full control over switches, links, controller

• Sometimes may be relaxed

• Parallel replay – when is it possible?

www.kth.se

Injecting events in an arbitrary order is wrong

13

Network reconfiguration

1. Compute minimal rule difference 

2. Reconfigure switches

And 

3a. Copy state from emulated controller to the real one

Or

3b. Transparently switch controllers

www.kth.se 14



26/08/2014

8

Parallel network emulation

• Multiple emulators with different network topologies

• Replicate events and inject to all emulators instantly

• After failure use state from a correct emulator

• Reuse previous code

• More emulators than one machine can handle

• Requires communication between many machines

www.kth.se 15

Testing

• Use Mininet

• Implement a few controllers:

• With custom failure recovery

• Without failure recovery

• Compare AFRO and custom recovery

www.kth.se 16



26/08/2014

9

Expected outcomes

• Well documented and working code

• Easy to deploy

• No crashes

• Functionality at least equal to Python prototype

• High performance

• Recording of over 40k events/sec

• Replay of over 20k events/sec

www.kth.se 17

Not ambitious enough?

Problems that require conceptual work:

• Event filtering strategies

• Parallel replay strategies

• Other OpenFlow events

www.kth.se 18



26/08/2014

10

References

AFRO description:

- http://web.ict.kth.se/~dejanko/documents/publications/afro-tr-
jan14.pdf

OpenFlow serialization libraries:

- oflib: http://cpqd.github.io/ofsoftswitch13

- Flowgrammable: http://flowgrammable.org/

OpenFlow software switches:

- reference: http://archive.openflow.org/downloads/openflow-
1.0.0.tar.gz

- OVS: http://openvswitch.org

- CPqD: http://cpqd.github.io/ofsoftswitch13

www.kth.se 19

http://web.ict.kth.se/~dejanko/documents/publications/afro-tr-jan14.pdf
http://cpqd.github.io/ofsoftswitch13
http://flowgrammable.org/
http://archive.openflow.org/downloads/openflow-1.0.0.tar.gz
http://openvswitch.org/
http://cpqd.github.io/ofsoftswitch13

