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SDN Failures
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SDN controllers can route traffic along 

non shortest-paths [B4, SIGCOMM ‘13]

SDN controller has to be 

involved during recovery
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Failure Recovery in Controllers
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Difficult Error prone
Time 

consuming

Abstraction of a network that never fails

Solution:

Decouple failure recovery and application logic
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Never failing network - intuition
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Automatic Failure Recovery for OpenFlow
(AFRO)
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Project overview

• Implement AFRO as a layer below the controller

• Test the implementation in a network emulator

• Evaluate performance 
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AFRO as a proxy

• AFRO is a layer between switches and controller

• Intercepts communication

• Can remove or add messages

• Implement as a transparent proxy in C++

• Use existing libraries to (de)serialize messages

– oflib by CPqD (OF 1.3)

– Flowgrammable (OF 1.0 – 1.4)

– Controllers like NOX
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AFRO - modules

• State tracking – event recording

• Failure detection

• State computation 

• Network reconfiguration

• Parallel network emulation
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State tracking

• Intercept

• (PacketIn) events coming from switches

• Messages going to switches

• Filter and store relevant events

• events coming from switches at network edge

• Expire events that are no longer relevant

• Many flows are short

• Remove event if a flow installed in response to this 
event is no longer in the network
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Failure detection

• Use OpenFlow messages

• Port Status message

• Switch disconnecting

www.kth.se 11

State computation

• Replay events in an emulated environment

• Start a copy of the controller in a fresh state

• Create an emulated network copy

– Build switch models or reuse existing software 

switches (references at the end)

• Inject events to the emulator and let them 

propagate
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Replay

• Order of events should reflect the order in original 

network

• When an event was processed?

• Requires full control over switches, links, controller

• Sometimes may be relaxed

• Parallel replay – when is it possible?
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Injecting events in an arbitrary order is wrong
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Network reconfiguration

1. Compute minimal rule difference 

2. Reconfigure switches

And 

3a. Copy state from emulated controller to the real one

Or

3b. Transparently switch controllers
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Parallel network emulation

• Multiple emulators with different network topologies

• Replicate events and inject to all emulators instantly

• After failure use state from a correct emulator

• Reuse previous code

• More emulators than one machine can handle

• Requires communication between many machines
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Testing

• Use Mininet

• Implement a few controllers:

• With custom failure recovery

• Without failure recovery

• Compare AFRO and custom recovery
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Expected outcomes

• Well documented and working code

• Easy to deploy

• No crashes

• Functionality at least equal to Python prototype

• High performance

• Recording of over 40k events/sec

• Replay of over 20k events/sec
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Not ambitious enough?

Problems that require conceptual work:

• Event filtering strategies

• Parallel replay strategies

• Other OpenFlow events
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References

AFRO description:

- http://web.ict.kth.se/~dejanko/documents/publications/afro-tr-
jan14.pdf

OpenFlow serialization libraries:

- oflib: http://cpqd.github.io/ofsoftswitch13

- Flowgrammable: http://flowgrammable.org/

OpenFlow software switches:

- reference: http://archive.openflow.org/downloads/openflow-
1.0.0.tar.gz

- OVS: http://openvswitch.org

- CPqD: http://cpqd.github.io/ofsoftswitch13
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