
Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Introduction to Internet
Applications

Internet Applications, ID1354

1 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Contents

Distributed Architectures

HTTP and Other Protocols

Tools

User Interface Design

2 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Section

Distributed Architectures

HTTP and Other Protocols

Tools

User Interface Design

3 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Local Application

I We are familiar with an
architecture where the entire
application resides on the same
computer.

4 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Introducing a Server

I Now, the application will
be split on two tiers
(computers).

I A client that has the
view and a server that
has controller and
model.

I The view is displayed in
a web browser.

This architecture is not good, we also need
layers for communication

.

5 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Introducing a Server

II Now, the application will
be split on two tiers
(computers).

I A client that has the
view and a server that
has controller and
model.

I The view is displayed in
a web browser.

This architecture is not good, we also need
layers for communication

.

5 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Introducing a Server

II Now, the application will
be split on two tiers
(computers).

I A client that has the
view and a server that
has controller and
model.

I The view is displayed in
a web browser.

This architecture is not good, we also need
layers for communication.

5 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Introducing a Server

II Now, the application will
be split on two tiers
(computers).

I A client that has the
view and a server that
has controller and
model.

I The view is displayed in
a web browser.

This architecture is not good, we also need
layers for communication.

5 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Server-Side Communication
II First, we add a server layer,

normally called view (a bit
confusing).

I However, the server side
view layer performs tasks
typical of a view:

I Creates views (HTML),
which are sent to the client.

I Interprets user gestures, a
click in a web page creates a
request to the server.

It might seem that we need yet a layer, for
network handling. There is such a layer, but it is
in the web server. We don’t write it ourselves.

6 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Server-Side Communication
I First, we add a server layer,

normally called view (a bit
confusing).

I However, the server side
view layer performs tasks
typical of a view:

I Creates views (HTML),
which are sent to the client.

I Interprets user gestures, a
click in a web page creates a
request to the server.

It might seem that we need yet a layer, for
network handling. There is such a layer, but it is
in the web server. We don’t write it ourselves.

6 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Server-Side Communication
I First, we add a server layer,

normally called view (a bit
confusing).

I However, the server side
view layer performs tasks
typical of a view:

I Creates views (HTML),
which are sent to the client.

I Interprets user gestures, a
click in a web page creates a
request to the server.

It might seem that we need yet a layer, for
network handling. There is such a layer, but it is
in the web server. We don’t write it ourselves.

6 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Server-Side Communication
I First, we add a server layer,

normally called view (a bit
confusing).

I However, the server side
view layer performs tasks
typical of a view:

I Creates views (HTML),
which are sent to the client.

I Interprets user gestures, a
click in a web page creates a
request to the server.

It might seem that we need yet a layer, for
network handling. There is such a layer, but it is
in the web server. We don’t write it ourselves.

6 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Server-Side Communication
I First, we add a server layer,

normally called view (a bit
confusing).

I However, the server side
view layer performs tasks
typical of a view:

I Creates views (HTML),
which are sent to the client.

I Interprets user gestures, a
click in a web page creates a
request to the server.

It might seem that we need yet a layer, for
network handling. There is such a layer, but it is
in the web server. We don’t write it ourselves.

6 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Client-Side Communication

I Next, we add a client
layer for communication,
the net layer.

I Actually, the browser
handles most of the
communication.

I The small network code
written by us is normally
considered part of the
client-side view, the net
layer is omitted.

I This is a traditional web application.

7 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Client-Side Communication

I Next, we add a client
layer for communication,
the net layer.

I Actually, the browser
handles most of the
communication.

I The small network code
written by us is normally
considered part of the
client-side view, the net
layer is omitted.

I This is a traditional web application.

7 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Client-Side Communication

I Next, we add a client
layer for communication,
the net layer.

I Actually, the browser
handles most of the
communication.

I The small network code
written by us is normally
considered part of the
client-side view, the net
layer is omitted.

I This is a traditional web application.

7 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The MVVM Pattern
I The trend is that data is

stored also on the client,
therefore we get a
client-side model.

I This reduces the network
communication, since we
do not need to resend
the entire view each time
the user does something.

I Thereby, the application
becomes faster.

I This is referred to as the MVVM,
model-view-viewmodel pattern.

8 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The MVVM Pattern
I The trend is that data is

stored also on the client,
therefore we get a
client-side model.

I This reduces the network
communication, since we
do not need to resend
the entire view each time
the user does something.

I Thereby, the application
becomes faster.

I This is referred to as the MVVM,
model-view-viewmodel pattern.

8 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The MVVM Pattern
I The trend is that data is

stored also on the client,
therefore we get a
client-side model.

I This reduces the network
communication, since we
do not need to resend
the entire view each time
the user does something.

I Thereby, the application
becomes faster.

I This is referred to as the MVVM,
model-view-viewmodel pattern.

8 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The MVVM Pattern
I The trend is that data is

stored also on the client,
therefore we get a
client-side model.

I This reduces the network
communication, since we
do not need to resend
the entire view each time
the user does something.

I Thereby, the application
becomes faster.

I This is referred to as the MVVM,
model-view-viewmodel pattern.

8 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Programming Languages

I This is the architecture
we will normally use
during the course.

I The view is programmed
in HTML and CSS, client
side behavior is
programmed in
JavaScript and the entire
server side code is
written in PHP.

9 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Programming Languages

I This is the architecture
we will normally use
during the course.

I The view is programmed
in HTML and CSS, client
side behavior is
programmed in
JavaScript and the entire
server side code is
written in PHP.

9 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Three-Tier Architecture

I Of course, we also need
to store data. That is
done in the data layer,
which is often a
database.

I We also introduce the
integration layer, to
handle the database
calls.

10 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Three-Tier Architecture

I Of course, we also need
to store data. That is
done in the data layer,
which is often a
database.

I We also introduce the
integration layer, to
handle the database
calls.

10 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Three-Tier Architecture (Cont’d)

I In a bigger application, we would most likely
place the database in a separate node.

I This is called three-tier architecture and is,
since long time, the dominating architecture
for web applications.

11 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Three-Tier Architecture (Cont’d)

I In a bigger application, we would most likely
place the database in a separate node.

I This is called three-tier architecture and is,
since long time, the dominating architecture
for web applications.

11 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Event-Driven Architecture

I In the latest year, there is a growing tendency to
move business logic to the client, perhaps
completely remove the server-side model.

I This is made possible with web sockets, which
enable full duplex browser-server communication.

I The motive is to reduce communication latency. The
browser informs the server about user actions, but
does not wait for response before updating the view.

12 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Event-Driven Architecture

I In the latest year, there is a growing tendency to
move business logic to the client, perhaps
completely remove the server-side model.

I This is made possible with web sockets, which
enable full duplex browser-server communication.

I The motive is to reduce communication latency. The
browser informs the server about user actions, but
does not wait for response before updating the view.

12 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Event-Driven Architecture

I In the latest year, there is a growing tendency to
move business logic to the client, perhaps
completely remove the server-side model.

I This is made possible with web sockets, which
enable full duplex browser-server communication.

I The motive is to reduce communication latency. The
browser informs the server about user actions, but
does not wait for response before updating the view.

12 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Section

Distributed Architectures

HTTP and Other Protocols

Tools

User Interface Design

13 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The IP Protocol
I All Internet communication is based on the

Internet Protocol (IP).
I IP provides basic functionality for sending

and receiving data.

I Data is sent in chunks, called packages. A
package is like an envelope for a letter. It
has sender and a receiver addresses and a
content, which is the data being
transmitted.

I A node (computer) receiving a packet can
accept it, ignore it or retransmit it.

I A node dedicated to retransmitting packets
across subnet borders is called a router.

14 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The IP Protocol
I All Internet communication is based on the

Internet Protocol (IP).
I IP provides basic functionality for sending

and receiving data.
I Data is sent in chunks, called packages. A

package is like an envelope for a letter. It
has sender and a receiver addresses and a
content, which is the data being
transmitted.

I A node (computer) receiving a packet can
accept it, ignore it or retransmit it.

I A node dedicated to retransmitting packets
across subnet borders is called a router.

14 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The IP Protocol
I All Internet communication is based on the

Internet Protocol (IP).
I IP provides basic functionality for sending

and receiving data.
I Data is sent in chunks, called packages. A

package is like an envelope for a letter. It
has sender and a receiver addresses and a
content, which is the data being
transmitted.

I A node (computer) receiving a packet can
accept it, ignore it or retransmit it.

I A node dedicated to retransmitting packets
across subnet borders is called a router.

14 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The IP Protocol
I All Internet communication is based on the

Internet Protocol (IP).
I IP provides basic functionality for sending

and receiving data.
I Data is sent in chunks, called packages. A

package is like an envelope for a letter. It
has sender and a receiver addresses and a
content, which is the data being
transmitted.

I A node (computer) receiving a packet can
accept it, ignore it or retransmit it.

I A node dedicated to retransmitting packets
across subnet borders is called a router.

14 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The IP Protocol
I All Internet communication is based on the

Internet Protocol (IP).
I IP provides basic functionality for sending

and receiving data.
I Data is sent in chunks, called packages. A

package is like an envelope for a letter. It
has sender and a receiver addresses and a
content, which is the data being
transmitted.

I A node (computer) receiving a packet can
accept it, ignore it or retransmit it.

I A node dedicated to retransmitting packets
across subnet borders is called a router.

14 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

IP Address
I An internet (version 4) address has 32 bits

divided into four bytes,
[0-255].[0-255].[0-255].[0-255]. Each node
connected to the internet has one or more
addresses.

I Normally, an IP address must be unique,
assigned only to one node.

I Some addresses, like 192.168.X.X are
dedicated to private networks and can be
used freely. Such an address is not
transmitted on the public internet. Instead, it
is translated to a public address by a router.

15 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

IP Address
I An internet (version 4) address has 32 bits

divided into four bytes,
[0-255].[0-255].[0-255].[0-255]. Each node
connected to the internet has one or more
addresses.

I Normally, an IP address must be unique,
assigned only to one node.

I Some addresses, like 192.168.X.X are
dedicated to private networks and can be
used freely. Such an address is not
transmitted on the public internet. Instead, it
is translated to a public address by a router.

15 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

IP Address
I An internet (version 4) address has 32 bits

divided into four bytes,
[0-255].[0-255].[0-255].[0-255]. Each node
connected to the internet has one or more
addresses.

I Normally, an IP address must be unique,
assigned only to one node.

I Some addresses, like 192.168.X.X are
dedicated to private networks and can be
used freely. Such an address is not
transmitted on the public internet. Instead, it
is translated to a public address by a router.

15 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The TCP Protocol

I TCP, Transmission Control Protocol, is used
on top of the IP protocol.

I TCP adds transport guarantees, for
example the following.

I Packets are delivered to the receiver in the
same order they are sent by the sender.

I Delivered packets have the same content as
sent packets.

I There are no lost packets.

16 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The TCP Protocol

I TCP, Transmission Control Protocol, is used
on top of the IP protocol.

I TCP adds transport guarantees, for
example the following.

I Packets are delivered to the receiver in the
same order they are sent by the sender.

I Delivered packets have the same content as
sent packets.

I There are no lost packets.

16 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The TCP Protocol

I TCP, Transmission Control Protocol, is used
on top of the IP protocol.

I TCP adds transport guarantees, for
example the following.

I Packets are delivered to the receiver in the
same order they are sent by the sender.

I Delivered packets have the same content as
sent packets.

I There are no lost packets.

16 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The TCP Protocol

I TCP, Transmission Control Protocol, is used
on top of the IP protocol.

I TCP adds transport guarantees, for
example the following.

I Packets are delivered to the receiver in the
same order they are sent by the sender.

I Delivered packets have the same content as
sent packets.

I There are no lost packets.

16 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The TCP Protocol

I TCP, Transmission Control Protocol, is used
on top of the IP protocol.

I TCP adds transport guarantees, for
example the following.

I Packets are delivered to the receiver in the
same order they are sent by the sender.

I Delivered packets have the same content as
sent packets.

I There are no lost packets.

16 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The TCP Protocol (Cont’d)

I TCP is connection-oriented, think of a
telephone line as opposed to sending a
letter. To establish a TCP connection is a
slow operation.

I TCP handles ports, which makes it possible
to have multiple connections with the same
IP address open simultaneously. A port is
identified by a number. An endpoint of a
TCP connection has an IP address and a
port number.

17 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The TCP Protocol (Cont’d)

I TCP is connection-oriented, think of a
telephone line as opposed to sending a
letter. To establish a TCP connection is a
slow operation.

I TCP handles ports, which makes it possible
to have multiple connections with the same
IP address open simultaneously. A port is
identified by a number. An endpoint of a
TCP connection has an IP address and a
port number.

17 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

DNS

I IP addresses are normally translated to
names (instead of numbers). Such a name
is called domain name.

I Domain names are divided into
subdomains, divided by dots (.)

I The address www.ict.kth.se consists of
the subdomain www, which is part of the
subdomain ict, which is part of kth, which
is part of se, which is part of the root, .

I The translation between numbers and
names is managed by DNS, Domain Name
System.

18 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

DNS

I IP addresses are normally translated to
names (instead of numbers). Such a name
is called domain name.

I Domain names are divided into
subdomains, divided by dots (.)

I The address www.ict.kth.se consists of
the subdomain www, which is part of the
subdomain ict, which is part of kth, which
is part of se, which is part of the root, .

I The translation between numbers and
names is managed by DNS, Domain Name
System.

18 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

DNS

I IP addresses are normally translated to
names (instead of numbers). Such a name
is called domain name.

I Domain names are divided into
subdomains, divided by dots (.)

I The address www.ict.kth.se consists of
the subdomain www, which is part of the
subdomain ict, which is part of kth, which
is part of se, which is part of the root, .

I The translation between numbers and
names is managed by DNS, Domain Name
System.

18 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

URL

I A Uniform Resource Locator, URL defines
a resource’s location on the internet.

I A URL consists of four parts.
1. A protocol, e.g., http

2. A host (IP address or name),
http://www.kth.se

3. A port number (optional). The default HTTP
port number is 80.
http://www.kth.se:8080

4. A path, which identifies the resource’s location
on the server.
http://www.kth.se:8080/abc/index.html

19 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

URL

I A Uniform Resource Locator, URL defines
a resource’s location on the internet.

I A URL consists of four parts.
1. A protocol, e.g., http
2. A host (IP address or name),

http://www.kth.se

3. A port number (optional). The default HTTP
port number is 80.
http://www.kth.se:8080

4. A path, which identifies the resource’s location
on the server.
http://www.kth.se:8080/abc/index.html

19 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

URL

I A Uniform Resource Locator, URL defines
a resource’s location on the internet.

I A URL consists of four parts.
1. A protocol, e.g., http
2. A host (IP address or name),

http://www.kth.se
3. A port number (optional). The default HTTP

port number is 80.
http://www.kth.se:8080

4. A path, which identifies the resource’s location
on the server.
http://www.kth.se:8080/abc/index.html

19 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

URL

I A Uniform Resource Locator, URL defines
a resource’s location on the internet.

I A URL consists of four parts.
1. A protocol, e.g., http
2. A host (IP address or name),

http://www.kth.se
3. A port number (optional). The default HTTP

port number is 80.
http://www.kth.se:8080

4. A path, which identifies the resource’s location
on the server.
http://www.kth.se:8080/abc/index.html

19 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

URL

I A Uniform Resource Locator, URL defines
a resource’s location on the internet.

I A URL consists of four parts.
1. A protocol, e.g., http
2. A host (IP address or name),

http://www.kth.se
3. A port number (optional). The default HTTP

port number is 80.
http://www.kth.se:8080

4. A path, which identifies the resource’s location
on the server.
http://www.kth.se:8080/abc/index.html

19 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

URN and URI

I A Uniform Resource Name, URN is a
resource identifier without host name and
port number. A typical example is a isbn
identifying a book.

I A Uniform Resource Identifier, URI is either
a URL or URN.

20 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

URN and URI

I A Uniform Resource Name, URN is a
resource identifier without host name and
port number. A typical example is a isbn
identifying a book.

I A Uniform Resource Identifier, URI is either
a URL or URN.

20 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP

I HyperText Transfer Protocol, HTTP is used
for communication between web browsers
and web servers.

I HTTP is based on TCP, which means a
TCP connection is established for each
browser-server communication.

21 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP

I HyperText Transfer Protocol, HTTP is used
for communication between web browsers
and web servers.

I HTTP is based on TCP, which means a
TCP connection is established for each
browser-server communication.

21 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The Request-Response Cycle

A HTTP communication typically proceeds as follows.

1. The client opens a TCP connection to the server.

2. The client sends a request for a resource on the
server. The request consists of a HTTP header, and
data if the user submitted data to the server.

3. The server sends a response to the client. Also the
response consists of HTTP headers, and data if the
response required data.

4. The server closes the TCP connection.

22 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The Request-Response Cycle

A HTTP communication typically proceeds as follows.

1. The client opens a TCP connection to the server.

2. The client sends a request for a resource on the
server. The request consists of a HTTP header, and
data if the user submitted data to the server.

3. The server sends a response to the client. Also the
response consists of HTTP headers, and data if the
response required data.

4. The server closes the TCP connection.

22 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The Request-Response Cycle

A HTTP communication typically proceeds as follows.

1. The client opens a TCP connection to the server.

2. The client sends a request for a resource on the
server. The request consists of a HTTP header, and
data if the user submitted data to the server.

3. The server sends a response to the client. Also the
response consists of HTTP headers, and data if the
response required data.

4. The server closes the TCP connection.
22 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The Request-Response Cycle

A HTTP communication typically proceeds as follows.

1. The client opens a TCP connection to the server.

2. The client sends a request for a resource on the
server. The request consists of a HTTP header, and
data if the user submitted data to the server.

3. The server sends a response to the client. Also the
response consists of HTTP headers, and data if the
response required data.

4. The server closes the TCP connection.
22 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The Request-Response Cycle
(Cont’d)

I HTTP is stateless. Neither server nor
browser remembers anything about
previous request-response cycles. Session
handling must be added in server-side
code.

I To establish a TCP connection is
expensive. Therefore, TCP connections
might be kept alive and reused for multiple
request-response cycles. This is specified
with the keep-alive HTTP header, se
below.

23 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

The Request-Response Cycle
(Cont’d)

I HTTP is stateless. Neither server nor
browser remembers anything about
previous request-response cycles. Session
handling must be added in server-side
code.

I To establish a TCP connection is
expensive. Therefore, TCP connections
might be kept alive and reused for multiple
request-response cycles. This is specified
with the keep-alive HTTP header, se
below.

23 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Cookies

I A cookie is a piece of data that is stored on
the client.

I The cookie is tagged with the server’s
domain name and included in every request
to that server.

I This enables the server to associate data
with a specific client.

I Cookies can be used to store the user’s
settings, for example display language.

24 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Cookies

I A cookie is a piece of data that is stored on
the client.

I The cookie is tagged with the server’s
domain name and included in every request
to that server.

I This enables the server to associate data
with a specific client.

I Cookies can be used to store the user’s
settings, for example display language.

24 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Cookies

I A cookie is a piece of data that is stored on
the client.

I The cookie is tagged with the server’s
domain name and included in every request
to that server.

I This enables the server to associate data
with a specific client.

I Cookies can be used to store the user’s
settings, for example display language.

24 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Cookies

I A cookie is a piece of data that is stored on
the client.

I The cookie is tagged with the server’s
domain name and included in every request
to that server.

I This enables the server to associate data
with a specific client.

I Cookies can be used to store the user’s
settings, for example display language.

24 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Sessions
I As mentioned above, HTTP is stateless.
I Still, the server must be able to recognize

which calls originate from the same client.
Otherwise for example log in is impossible.

I One commonly used method to solve this
problem is to use cookies.

I If a request has a cookie with a session
identifier, it identifies the user. If there is no
such cookie, the user does not have a
running session.

I On the server, the session id can be
associated with any amount of data related
to the user with that session. This is called
conversational state.

25 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Sessions
I As mentioned above, HTTP is stateless.
I Still, the server must be able to recognize

which calls originate from the same client.
Otherwise for example log in is impossible.

I One commonly used method to solve this
problem is to use cookies.

I If a request has a cookie with a session
identifier, it identifies the user. If there is no
such cookie, the user does not have a
running session.

I On the server, the session id can be
associated with any amount of data related
to the user with that session. This is called
conversational state.

25 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Sessions
I As mentioned above, HTTP is stateless.
I Still, the server must be able to recognize

which calls originate from the same client.
Otherwise for example log in is impossible.

I One commonly used method to solve this
problem is to use cookies.

I If a request has a cookie with a session
identifier, it identifies the user. If there is no
such cookie, the user does not have a
running session.

I On the server, the session id can be
associated with any amount of data related
to the user with that session. This is called
conversational state.

25 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Sessions
I As mentioned above, HTTP is stateless.
I Still, the server must be able to recognize

which calls originate from the same client.
Otherwise for example log in is impossible.

I One commonly used method to solve this
problem is to use cookies.

I If a request has a cookie with a session
identifier, it identifies the user. If there is no
such cookie, the user does not have a
running session.

I On the server, the session id can be
associated with any amount of data related
to the user with that session. This is called
conversational state. 25 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Sessions
I As mentioned above, HTTP is stateless.
I Still, the server must be able to recognize

which calls originate from the same client.
Otherwise for example log in is impossible.

I One commonly used method to solve this
problem is to use cookies.

I If a request has a cookie with a session
identifier, it identifies the user. If there is no
such cookie, the user does not have a
running session.

I On the server, the session id can be
associated with any amount of data related
to the user with that session. This is called
conversational state. 25 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Message Format

I A HTTP message has start-line,
headers and body.

I The request start-line consists of
HTTP method (se left), URL path
and HTTP version, e.g., GET
/page1.html HTTP/1.1

I The response start-line consists of
HTTP version, status code and
reason, e.g.,
HTTP/1.1 200 OK

I Sample request (top) and
response (bottom) messages are
depicted to the left.

26 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Message Format

I A HTTP message has start-line,
headers and body.

I The request start-line consists of
HTTP method (se left), URL path
and HTTP version, e.g., GET
/page1.html HTTP/1.1

I The response start-line consists of
HTTP version, status code and
reason, e.g.,
HTTP/1.1 200 OK

I Sample request (top) and
response (bottom) messages are
depicted to the left.

26 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Message Format

I A HTTP message has start-line,
headers and body.

I The request start-line consists of
HTTP method (se left), URL path
and HTTP version, e.g., GET
/page1.html HTTP/1.1

I The response start-line consists of
HTTP version, status code and
reason, e.g.,
HTTP/1.1 200 OK

I Sample request (top) and
response (bottom) messages are
depicted to the left.

26 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Message Format

I A HTTP message has start-line,
headers and body.

I The request start-line consists of
HTTP method (se left), URL path
and HTTP version, e.g., GET
/page1.html HTTP/1.1

I The response start-line consists of
HTTP version, status code and
reason, e.g.,
HTTP/1.1 200 OK

I Sample request (top) and
response (bottom) messages are
depicted to the left.

26 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Status Codes

I A HTTP response contains a status code to
indicate the outcome of the request. There
are five different categories of status codes.

1xx Reply contains information, for
example 101, Switch Protocol.

2xx Success, for example 200, OK.

3xx Redirection, for example 301, Moved
Permanently.

4xx Client error, for example 404, Not
Found.

5xx Server error, for example 500, Internal
Server Error

27 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Status Codes

I A HTTP response contains a status code to
indicate the outcome of the request. There
are five different categories of status codes.

1xx Reply contains information, for
example 101, Switch Protocol.

2xx Success, for example 200, OK.
3xx Redirection, for example 301, Moved

Permanently.

4xx Client error, for example 404, Not
Found.

5xx Server error, for example 500, Internal
Server Error

27 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Status Codes

I A HTTP response contains a status code to
indicate the outcome of the request. There
are five different categories of status codes.

1xx Reply contains information, for
example 101, Switch Protocol.

2xx Success, for example 200, OK.
3xx Redirection, for example 301, Moved

Permanently.
4xx Client error, for example 404, Not

Found.

5xx Server error, for example 500, Internal
Server Error

27 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Status Codes

I A HTTP response contains a status code to
indicate the outcome of the request. There
are five different categories of status codes.

1xx Reply contains information, for
example 101, Switch Protocol.

2xx Success, for example 200, OK.
3xx Redirection, for example 301, Moved

Permanently.
4xx Client error, for example 404, Not

Found.
5xx Server error, for example 500, Internal

Server Error

27 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Status Codes

I A HTTP response contains a status code to
indicate the outcome of the request. There
are five different categories of status codes.

1xx Reply contains information, for
example 101, Switch Protocol.

2xx Success, for example 200, OK.
3xx Redirection, for example 301, Moved

Permanently.
4xx Client error, for example 404, Not

Found.
5xx Server error, for example 500, Internal

Server Error

27 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.

PUT Accept message body and store it as a
resource with the specified URL.

DELETE Delete the resource at the given URL.
HEAD Like GET, but only deliver headers.

TRACE Return the request message.
OPTIONS Tell which HTTP methods can be used

with the specified URL.
CONNECT Connect to another host.

I GET and POST are the most common methods and
the only ones we will use in this course.

28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.

DELETE Delete the resource at the given URL.
HEAD Like GET, but only deliver headers.

TRACE Return the request message.
OPTIONS Tell which HTTP methods can be used

with the specified URL.
CONNECT Connect to another host.

I GET and POST are the most common methods and
the only ones we will use in this course.

28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.
DELETE Delete the resource at the given URL.

HEAD Like GET, but only deliver headers.
TRACE Return the request message.

OPTIONS Tell which HTTP methods can be used
with the specified URL.

CONNECT Connect to another host.
I GET and POST are the most common methods and

the only ones we will use in this course.

28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.
DELETE Delete the resource at the given URL.

HEAD Like GET, but only deliver headers.

TRACE Return the request message.
OPTIONS Tell which HTTP methods can be used

with the specified URL.
CONNECT Connect to another host.

I GET and POST are the most common methods and
the only ones we will use in this course.

28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.
DELETE Delete the resource at the given URL.

HEAD Like GET, but only deliver headers.
TRACE Return the request message.

OPTIONS Tell which HTTP methods can be used
with the specified URL.

CONNECT Connect to another host.
I GET and POST are the most common methods and

the only ones we will use in this course.

28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.
DELETE Delete the resource at the given URL.

HEAD Like GET, but only deliver headers.
TRACE Return the request message.

OPTIONS Tell which HTTP methods can be used
with the specified URL.

CONNECT Connect to another host.
I GET and POST are the most common methods and

the only ones we will use in this course.

28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.
DELETE Delete the resource at the given URL.

HEAD Like GET, but only deliver headers.
TRACE Return the request message.

OPTIONS Tell which HTTP methods can be used
with the specified URL.

CONNECT Connect to another host.

I GET and POST are the most common methods and
the only ones we will use in this course.

28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.
DELETE Delete the resource at the given URL.

HEAD Like GET, but only deliver headers.
TRACE Return the request message.

OPTIONS Tell which HTTP methods can be used
with the specified URL.

CONNECT Connect to another host.
I GET and POST are the most common methods and

the only ones we will use in this course.
28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Methods
I HTTP 1.1 has eight different methods that

requires the following server actions.
GET Deliver resource identified by the

specified URL.
POST Accept message body and deliver it to

the resource at the specified URL.
PUT Accept message body and store it as a

resource with the specified URL.
DELETE Delete the resource at the given URL.

HEAD Like GET, but only deliver headers.
TRACE Return the request message.

OPTIONS Tell which HTTP methods can be used
with the specified URL.

CONNECT Connect to another host.
I GET and POST are the most common methods and

the only ones we will use in this course.
28 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Safe and Idempotent Methods
I GET and HEAD are safe methods, which

means they should not take any action
other than to retrieve the specified
resource.

I GET, HEAD, PUT, DELETE, OPTIONS
and TRACE are idempotent methods,
which means the same request can be sent
multiple times without any side-effects on
the server.

I POST is not idempotent. If you submit the
same purchase order multiple times in a
web shop you will probably by multiple
items. The purchase is typically a POST
request.

29 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Safe and Idempotent Methods
I GET and HEAD are safe methods, which

means they should not take any action
other than to retrieve the specified
resource.

I GET, HEAD, PUT, DELETE, OPTIONS
and TRACE are idempotent methods,
which means the same request can be sent
multiple times without any side-effects on
the server.

I POST is not idempotent. If you submit the
same purchase order multiple times in a
web shop you will probably by multiple
items. The purchase is typically a POST
request. 29 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Safe and Idempotent Methods
I GET and HEAD are safe methods, which

means they should not take any action
other than to retrieve the specified
resource.

I GET, HEAD, PUT, DELETE, OPTIONS
and TRACE are idempotent methods,
which means the same request can be sent
multiple times without any side-effects on
the server.

I POST is not idempotent. If you submit the
same purchase order multiple times in a
web shop you will probably by multiple
items. The purchase is typically a POST
request. 29 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

When to Use GET

I Use GET when
I The only desired action is to retrieve the

specified resource.
I If it shall be possible to bookmark the link.

I The URL is shorter than 255 bytes. Note that
a GET URL is longer than a POST URL since
data is included in the URL which GET, but is
in the message body with POST (see below).

I You want to be able to write the entire request,
including data, in the browser. This is useful
when debugging.

30 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

When to Use GET

I Use GET when
I The only desired action is to retrieve the

specified resource.
I If it shall be possible to bookmark the link.
I The URL is shorter than 255 bytes. Note that

a GET URL is longer than a POST URL since
data is included in the URL which GET, but is
in the message body with POST (see below).

I You want to be able to write the entire request,
including data, in the browser. This is useful
when debugging.

30 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

When to Use GET

I Use GET when
I The only desired action is to retrieve the

specified resource.
I If it shall be possible to bookmark the link.
I The URL is shorter than 255 bytes. Note that

a GET URL is longer than a POST URL since
data is included in the URL which GET, but is
in the message body with POST (see below).

I You want to be able to write the entire request,
including data, in the browser. This is useful
when debugging.

30 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

When to Use GET

I Use GET when
I The only desired action is to retrieve the

specified resource.
I If it shall be possible to bookmark the link.
I The URL is shorter than 255 bytes. Note that

a GET URL is longer than a POST URL since
data is included in the URL which GET, but is
in the message body with POST (see below).

I You want to be able to write the entire request,
including data, in the browser. This is useful
when debugging.

30 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

When to Use POST

I Use POST when
I The required action updates server state, for

example saves something in a database.
I The data does not fit within the 255 byte limit

for URLs.

I The data shall not appear in the URL. Note
that this is not a matter of security, data is sent
in clear text also when using POST.

31 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

When to Use POST

I Use POST when
I The required action updates server state, for

example saves something in a database.
I The data does not fit within the 255 byte limit

for URLs.
I The data shall not appear in the URL. Note

that this is not a matter of security, data is sent
in clear text also when using POST.

31 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

When to Use POST

I Use POST when
I The required action updates server state, for

example saves something in a database.
I The data does not fit within the 255 byte limit

for URLs.
I The data shall not appear in the URL. Note

that this is not a matter of security, data is sent
in clear text also when using POST.

31 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Parameters

I HTTP parameters are data included in a
request to a web server.

I A typical example is when the user has
entered data in a HTML form.

I When using the GET method, parameters
are appended to the URL as a query string,
http://some.domain/
some/path?city=stockholm&country=sweden

I When using the POST method, parameters
are included in the message body.

32 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Parameters
I HTTP parameters are data included in a

request to a web server.
I A typical example is when the user has

entered data in a HTML form.

I When using the GET method, parameters
are appended to the URL as a query string,
http://some.domain/
some/path?city=stockholm&country=sweden

I When using the POST method, parameters
are included in the message body.

32 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Parameters
I HTTP parameters are data included in a

request to a web server.
I A typical example is when the user has

entered data in a HTML form.

I When using the GET method, parameters
are appended to the URL as a query string,
http://some.domain/
some/path?city=stockholm&country=sweden

I When using the POST method, parameters
are included in the message body.

32 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Parameters

I HTTP parameters are data included in a
request to a web server.

I A typical example is when the user has
entered data in a HTML form.

I When using the GET method, parameters
are appended to the URL as a query string,
http://some.domain/
some/path?city=stockholm&country=sweden

I When using the POST method, parameters
are included in the message body.

32 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:

Host The receiver address or domain name.
User-Agent Identifies the sender browser and

operating system.
Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:

Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:

Host The receiver address or domain name.
User-Agent Identifies the sender browser and

operating system.
Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:

Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:

Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:

Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.

Connection Keep connection open future requests.
I Sample response headers are:

Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:

Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:

Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:
Content-Length Message body length in bytes.

Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:
Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

HTTP Headers
I HTTP headers have the syntax
name: value

I There are several predefined headers, and
it is also allowed to add new headers.

I Sample request headers are:
Host The receiver address or domain name.

User-Agent Identifies the sender browser and
operating system.

Content-Length Message body length in bytes.
Connection Keep connection open future requests.

I Sample response headers are:
Content-Length Message body length in bytes.
Content-Type Media Type (see below) of response.

33 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Media Type

I Media Type (or MIME Type) defines
message content. This tells the receiver
how to interpret the data.

I Some media types are:
text/html HTML markup
text/plain Plain text

image/png A png image
video/ogg A ogg video.

34 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Media Type

I Media Type (or MIME Type) defines
message content. This tells the receiver
how to interpret the data.

I Some media types are:
text/html HTML markup
text/plain Plain text

image/png A png image
video/ogg A ogg video.

34 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Browsers

I It is important to test the web application
with all different browsers that shall be able
to display it.

I Browsers behave differently, and you
should expect that some break
specifications.

35 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Browsers

I It is important to test the web application
with all different browsers that shall be able
to display it.

I Browsers behave differently, and you
should expect that some break
specifications.

35 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Servers

I The web server can deliver
static content and also call
server-side programs, like
PHP, Java or .NET programs.

I The most commonly used
web server is apache,
https://httpd.apache.org/

I Other common web servers
are nginx,
http://wiki.nginx.org/Main

and Microsoft IIS.

36 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Servers

I The web server can deliver
static content and also call
server-side programs, like
PHP, Java or .NET programs.

I The most commonly used
web server is apache,
https://httpd.apache.org/

I Other common web servers
are nginx,
http://wiki.nginx.org/Main

and Microsoft IIS.

36 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Servers

I The web server can deliver
static content and also call
server-side programs, like
PHP, Java or .NET programs.

I The most commonly used
web server is apache,
https://httpd.apache.org/

I Other common web servers
are nginx,
http://wiki.nginx.org/Main

and Microsoft IIS.

36 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Servers (Cont’d)

I You need to install a web server on your
laptop. All labs will be reported on your own
laptop, there is no web server in ICT school
where you can run all the labs.

I It might take time to get the web server
running. You are advised to start installing
the web server now.

37 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Servers (Cont’d)

I You need to install a web server on your
laptop. All labs will be reported on your own
laptop, there is no web server in ICT school
where you can run all the labs.

I It might take time to get the web server
running. You are advised to start installing
the web server now.

37 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Section

Distributed Architectures

HTTP and Other Protocols

Tools

User Interface Design

38 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Development Tools

I There are many tools that facilitates
developing web applications.

I Browser support varies between tools, most
examples will be using Firefox.

I You are strongly advised to start using
some of the following tools, they will help
you a lot.

39 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Development Tools

I There are many tools that facilitates
developing web applications.

I Browser support varies between tools, most
examples will be using Firefox.

I You are strongly advised to start using
some of the following tools, they will help
you a lot.

39 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Development Tools

I There are many tools that facilitates
developing web applications.

I Browser support varies between tools, most
examples will be using Firefox.

I You are strongly advised to start using
some of the following tools, they will help
you a lot.

39 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Browser Web Console
I Most browsers have a

built-in console.

I The console logs
information associated
with the web page, for
example errors and
warnings related to
JavaScript, CSS and
network requests.

I It enables you to run
JavaScript expressions
in the web page.

I It also lets you choose elements from the web page
and have their HTML and CSS displayed.

40 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Browser Web Console
I Most browsers have a

built-in console.

I The console logs
information associated
with the web page, for
example errors and
warnings related to
JavaScript, CSS and
network requests.

I It enables you to run
JavaScript expressions
in the web page.

I It also lets you choose elements from the web page
and have their HTML and CSS displayed.

40 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Browser Web Console
I Most browsers have a

built-in console.

I The console logs
information associated
with the web page, for
example errors and
warnings related to
JavaScript, CSS and
network requests.

I It enables you to run
JavaScript expressions
in the web page.

I It also lets you choose elements from the web page
and have their HTML and CSS displayed.

40 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Browser Web Console
I Most browsers have a

built-in console.

I The console logs
information associated
with the web page, for
example errors and
warnings related to
JavaScript, CSS and
network requests.

I It enables you to run
JavaScript expressions
in the web page.

I It also lets you choose elements from the web page
and have their HTML and CSS displayed.

40 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Browser Web Console (Cont’d)

I The console is opened with
Ctrl-Shift-K in Firefox and
Ctrl-Shift-J in Chrome.

41 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Firebug

I Firebug is a powerful plug-in to Firefox.
I In addition to console features, you can for

example debug JavaScript, mark HTML
elements, edit CSS and log network traffic.

I There are also many plug-ins to Firebug.
I There is a cross-browser version of

Firebug, written in JavaScript, that offers a
subset of the functionality for most other
browsers.

42 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Firebug

I Firebug is a powerful plug-in to Firefox.
I In addition to console features, you can for

example debug JavaScript, mark HTML
elements, edit CSS and log network traffic.

I There are also many plug-ins to Firebug.

I There is a cross-browser version of
Firebug, written in JavaScript, that offers a
subset of the functionality for most other
browsers.

42 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Firebug

I Firebug is a powerful plug-in to Firefox.
I In addition to console features, you can for

example debug JavaScript, mark HTML
elements, edit CSS and log network traffic.

I There are also many plug-ins to Firebug.
I There is a cross-browser version of

Firebug, written in JavaScript, that offers a
subset of the functionality for most other
browsers. 42 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Firebug

I Firebug is a powerful plug-in to Firefox.
I In addition to console features, you can for

example debug JavaScript, mark HTML
elements, edit CSS and log network traffic.

I There are also many plug-ins to Firebug.
I There is a cross-browser version of

Firebug, written in JavaScript, that offers a
subset of the functionality for most other
browsers. 42 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Developer
I Web Developer is a powerful

plug-in to Firefox, which
allows you to:

I edit HTML and CSS.

I See the area covered
by a chosen element.

I See the page in
different screen
resolutions.

I Edit cookies.
I Validate HTML and

CSS.

I Web Developer has been
ported to Chrome.

43 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Developer
I Web Developer is a powerful

plug-in to Firefox, which
allows you to:

I edit HTML and CSS.
I See the area covered

by a chosen element.

I See the page in
different screen
resolutions.

I Edit cookies.
I Validate HTML and

CSS.

I Web Developer has been
ported to Chrome.

43 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Developer
I Web Developer is a powerful

plug-in to Firefox, which
allows you to:

I edit HTML and CSS.
I See the area covered

by a chosen element.
I See the page in

different screen
resolutions.

I Edit cookies.
I Validate HTML and

CSS.

I Web Developer has been
ported to Chrome.

43 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Developer
I Web Developer is a powerful

plug-in to Firefox, which
allows you to:

I edit HTML and CSS.
I See the area covered

by a chosen element.
I See the page in

different screen
resolutions.

I Edit cookies.

I Validate HTML and
CSS.

I Web Developer has been
ported to Chrome.

43 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Developer
I Web Developer is a powerful

plug-in to Firefox, which
allows you to:

I edit HTML and CSS.
I See the area covered

by a chosen element.
I See the page in

different screen
resolutions.

I Edit cookies.
I Validate HTML and

CSS.

I Web Developer has been
ported to Chrome.

43 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Developer
I Web Developer is a powerful

plug-in to Firefox, which
allows you to:

I edit HTML and CSS.
I See the area covered

by a chosen element.
I See the page in

different screen
resolutions.

I Edit cookies.
I Validate HTML and

CSS.

I Web Developer has been
ported to Chrome.

43 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Web Developer
I Web Developer is a powerful

plug-in to Firefox, which
allows you to:

I edit HTML and CSS.
I See the area covered

by a chosen element.
I See the page in

different screen
resolutions.

I Edit cookies.
I Validate HTML and

CSS.

I Web Developer has been
ported to Chrome.

43 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Validators

I There are online validators for both HTML
and CSS. Links can be found on the course
web site.

I Remember to always validate your HTML
and CSS code.

44 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Validators

I There are online validators for both HTML
and CSS. Links can be found on the course
web site.

I Remember to always validate your HTML
and CSS code.

44 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

NetBeans

I There are many different IDEs for web
development, all have their pros and cons.

I NetBeans will be used for examples during
the course. Make sure to download the All
version, see image above.

I Most important is that you actually use an
IDE, do not program in a text editor unless
you are really sure it is what you prefer.

45 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

NetBeans

I There are many different IDEs for web
development, all have their pros and cons.

I NetBeans will be used for examples during
the course. Make sure to download the All
version, see image above.

I Most important is that you actually use an
IDE, do not program in a text editor unless
you are really sure it is what you prefer. 45 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

NetBeans

I There are many different IDEs for web
development, all have their pros and cons.

I NetBeans will be used for examples during
the course. Make sure to download the All
version, see image above.

I Most important is that you actually use an
IDE, do not program in a text editor unless
you are really sure it is what you prefer. 45 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

JSFiddle and JSLint

I JSFiddle is an online editor where you can
test HTML, CSS and JavaScript.

I JSLint is an online tool for testing
JavaScript code quality.

46 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

JSFiddle and JSLint

I JSFiddle is an online editor where you can
test HTML, CSS and JavaScript.

I JSLint is an online tool for testing
JavaScript code quality.

46 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

W3Schools Try It Yourself

I w3schools.com has excellent tutorials
for all languages covered in the course.

I All examples are presented with an online
editor where you can experiment with your
code.

47 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

W3Schools Try It Yourself

I w3schools.com has excellent tutorials
for all languages covered in the course.

I All examples are presented with an online
editor where you can experiment with your
code.

47 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Section

Distributed Architectures

HTTP and Other Protocols

Tools

User Interface Design

48 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Use UI Guidelines!
I This is not a course in human-computer

interaction. Still, it is mandatory to consider
basic heuristics for user interface design.

I There are some short introductory texts on
user interface design available at Nielsen
Norman Group, such as:

I 10 Usability Heuristics for User Interface
Design,
http://www.nngroup.com/articles/
ten-usability-heuristics/

I Top 10 Mistakes in Web Design,
http://www.nngroup.com/articles/
top-10-mistakes-web-design/

I Other lists linked from the latter.
I Here follows the 10 usability heuristics

mentioned above.

49 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Use UI Guidelines!
I This is not a course in human-computer

interaction. Still, it is mandatory to consider
basic heuristics for user interface design.

I There are some short introductory texts on
user interface design available at Nielsen
Norman Group, such as:

I 10 Usability Heuristics for User Interface
Design,
http://www.nngroup.com/articles/
ten-usability-heuristics/

I Top 10 Mistakes in Web Design,
http://www.nngroup.com/articles/
top-10-mistakes-web-design/

I Other lists linked from the latter.
I Here follows the 10 usability heuristics

mentioned above.

49 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Use UI Guidelines!
I This is not a course in human-computer

interaction. Still, it is mandatory to consider
basic heuristics for user interface design.

I There are some short introductory texts on
user interface design available at Nielsen
Norman Group, such as:

I 10 Usability Heuristics for User Interface
Design,
http://www.nngroup.com/articles/
ten-usability-heuristics/

I Top 10 Mistakes in Web Design,
http://www.nngroup.com/articles/
top-10-mistakes-web-design/

I Other lists linked from the latter.
I Here follows the 10 usability heuristics

mentioned above.

49 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Use UI Guidelines!
I This is not a course in human-computer

interaction. Still, it is mandatory to consider
basic heuristics for user interface design.

I There are some short introductory texts on
user interface design available at Nielsen
Norman Group, such as:

I 10 Usability Heuristics for User Interface
Design,
http://www.nngroup.com/articles/
ten-usability-heuristics/

I Top 10 Mistakes in Web Design,
http://www.nngroup.com/articles/
top-10-mistakes-web-design/

I Other lists linked from the latter.

I Here follows the 10 usability heuristics
mentioned above.

49 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Use UI Guidelines!
I This is not a course in human-computer

interaction. Still, it is mandatory to consider
basic heuristics for user interface design.

I There are some short introductory texts on
user interface design available at Nielsen
Norman Group, such as:

I 10 Usability Heuristics for User Interface
Design,
http://www.nngroup.com/articles/
ten-usability-heuristics/

I Top 10 Mistakes in Web Design,
http://www.nngroup.com/articles/
top-10-mistakes-web-design/

I Other lists linked from the latter.
I Here follows the 10 usability heuristics

mentioned above. 49 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

Use UI Guidelines!
I This is not a course in human-computer

interaction. Still, it is mandatory to consider
basic heuristics for user interface design.

I There are some short introductory texts on
user interface design available at Nielsen
Norman Group, such as:

I 10 Usability Heuristics for User Interface
Design,
http://www.nngroup.com/articles/
ten-usability-heuristics/

I Top 10 Mistakes in Web Design,
http://www.nngroup.com/articles/
top-10-mistakes-web-design/

I Other lists linked from the latter.
I Here follows the 10 usability heuristics

mentioned above. 49 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

1. The system should always keep users
informed about what is going on.

2. Use words, phrases and concepts familiar
to the user, rather than system-oriented
terms.

3. Implement undo and redo.
4. Follow platform conventions, users should

not have to wonder whether different words,
situations, or actions mean the same thing.

50 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

1. The system should always keep users
informed about what is going on.

2. Use words, phrases and concepts familiar
to the user, rather than system-oriented
terms.

3. Implement undo and redo.

4. Follow platform conventions, users should
not have to wonder whether different words,
situations, or actions mean the same thing.

50 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

1. The system should always keep users
informed about what is going on.

2. Use words, phrases and concepts familiar
to the user, rather than system-oriented
terms.

3. Implement undo and redo.
4. Follow platform conventions, users should

not have to wonder whether different words,
situations, or actions mean the same thing.

50 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

1. The system should always keep users
informed about what is going on.

2. Use words, phrases and concepts familiar
to the user, rather than system-oriented
terms.

3. Implement undo and redo.
4. Follow platform conventions, users should

not have to wonder whether different words,
situations, or actions mean the same thing.

50 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

5. Eliminate error-prone conditions or check
for them and ask users to confirm before
they commit to the action.

6. Minimize the user’s memory load by making
objects, options, etc visible. The user
should not have to remember information.

7. Use accelerators to speed up interaction for
expert users.

8. Remove irrelevant information.

51 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

5. Eliminate error-prone conditions or check
for them and ask users to confirm before
they commit to the action.

6. Minimize the user’s memory load by making
objects, options, etc visible. The user
should not have to remember information.

7. Use accelerators to speed up interaction for
expert users.

8. Remove irrelevant information.

51 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

5. Eliminate error-prone conditions or check
for them and ask users to confirm before
they commit to the action.

6. Minimize the user’s memory load by making
objects, options, etc visible. The user
should not have to remember information.

7. Use accelerators to speed up interaction for
expert users.

8. Remove irrelevant information.

51 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

5. Eliminate error-prone conditions or check
for them and ask users to confirm before
they commit to the action.

6. Minimize the user’s memory load by making
objects, options, etc visible. The user
should not have to remember information.

7. Use accelerators to speed up interaction for
expert users.

8. Remove irrelevant information.

51 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

9. Error messages should be expressed in
plain language, precisely indicate the
problem, and suggest a solution.

10. If necessary, provide help and
documentation. The help should be easy to
search, focused on the user’s task, and list
concrete steps to be carried out.

52 / 52



Introduction

Distributed
Architectures

HTTP and Other
Protocols

Tools

User Interface
Design

J. Nielsen’s UI Design Principles

9. Error messages should be expressed in
plain language, precisely indicate the
problem, and suggest a solution.

10. If necessary, provide help and
documentation. The help should be easy to
search, focused on the user’s task, and list
concrete steps to be carried out.

52 / 52


	Distributed Architectures
	HTTP and Other Protocols
	Tools
	User Interface Design

