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Course content

e Partl

» Lec 1: Introduction to WSNs
» Lec 2: Introduction to Programming WSNs

o Part 2

> Lec 3: Wireless Channel

> Lec 4: Physical Layer

> Lec 5: Medium Access Control Layer
> Lec 6: Routing

o Part 3

Lec 7: Distributed Detection

Lec 8: Static Distributed Estimation
Lec 9: Dynamic Distributed Estimation
Lec 10: Positioning and Localization
Lec 11: Time Synchronization
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e Part 4

> Lec 12: Wireless Sensor Network Control Systems 1
> Lec 13: Wireless Sensor Network Control Systems 2
» Lec 14: Summary and Project Presentations
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Today's Lecture

WSN Programming

Introduction
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Programming WSNs

@ What do we need to write software for WSNs?
(or: for any system, like your laptop, cell phone?)
» Programming language
o With compiler, etc.
» OS/runtime libraries
® Access to system resources
o APIls: Communication, sensors, etc.
@ Put Windows 7 on a sensor node?

» Or Linux, Android, ...
» Use Java, Python, ... as programming languages?
» WSNs are embedded systems

e Resource constraints
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Today's Topics

@ NesC
» Programming Language for WSNs

e TinyOS

» WSN OS/runtime
» Note: many other OS exist (Contiki, Mantis, LiteOS, Nano-RK, ...)

e TinyOS: widespread, especially in academia

Examples

Hands-on

» Your turn!
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TinyOS and NesC

TinyOS and NesC
Component Model
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TinyOS Components

e TinyOS and its applications are written in NesC

» C dialect with extra features: mainly Components
@ Basic unit of NesC code is a Component

o Components connect via Interfaces
» Connections called “wiring”
> Interfaces:

® Access to the functions of component
e Provide functionality to the outside
e Similar to Interfaces in Java etc.
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TinyOS Components

B provides
functionality
Example:
-Turn on LED
-Send packet

A uses functionality Interface | describes
provided by B the “API”

Example: To send a

packet
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TinyOS Components

Two types of components
o Modules (M):

> Base type
» Contains functionality / implementations:
“The real code”

o Configurations (C): .ﬁ@@@

» Contain multiple sub-components
Modules or Configurations: Nesting
» Describe connections
Which module uses the function W @ o
» Parameterize sub-components: =
Options, etc.

@ Very similar to classes in Java etc.

> But static
> No instantiation at runtime (new “new()"”)
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TinyOS Components

o Components

> use or provide interfaces
» Use : component uses func. of others
» Provide : provide func. to others

o Interfaces contain

» The API
» Contain commands and events

Function calls Cc | Events
Use Call Command Implement Event Handler
Provide Implement Command Body Signal Event
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TinyOS Modules

@ Specification

> List of interfaces the component

e Provides:
Functionality it provides to
others

e Uses:
Functionality of others it uses

» Alias interfaces as new name
@ Implementation

» Commands of provided interfaces
» Events of used interfaces

module FooM {

//Specification

provides {
interface Foo;

I3

uses {
interface Poo as PooFoo;
interface Boo;

}

//Implementation
implementation {
//Command handlers
command result_t Foo.comm{

//Event handlers
event void Boo.event{

.
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TinyOS Modules

init start stop  fired

VW VWV W /.

Timer

-Tasks m

Command
handlers .F

handlers

\ 4 ZXN

setRate fire
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Example

TinyOS and NesC

Example: Hello World
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Example: “Hello World"

@ No screen, we cannot print “Hello World” ...

@ ...So, let them periodically blink the LEDs!

o Ingredients:
> A timer to trigger the periodic blinking
e TOS provides a Timer library
» A way to turn the LEDs on and off
o TOS provides a LedsC component to control the LEDs
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“Hello World"

interface Leds {

command void led0On();
Called to ™ command void led0OfF();
control a led command void led0Toggle();

/- TMicro, T32Khz

Can be TMilli,

interface Timer <precision> {
command void startPeriodic(uint32_t dt);
command void startOneShot(uint32_t dt);
event void fired();

Called to
start a timer

Signaled when

the timer expires
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Timer with
millisecond
precision

“Hello World"

module BlinkC {
uses interface Timer<TMilli> as BlinkTimer;
uses interface Leds;
uses interface Boot;

Signaled when

hw ready

}

implementation {
event void Boot.booted() {

call | BlinkTimer startPeriodic(1000);

}

event void \ BlinkTimer.fired() \ {
call Leds.led0Toggle();

}
}
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No interfaces
used or provided

“Hello World"

configuration BlinkAppC {}
Provides Boot
implementation {
components MainC,
BlinkC,
LedsC;
components new ‘ TimerMilliC as Timer0;

TimerMilliC is
a generic com-
ponent: can

be instantiated

BlinkC -> MainC.Boot; . multiple times!
BlinkC.BlinkTimer -> Timer0; Wirings
BlinkC.Leds -> LedsC;

@ Instantiation is done at compile-time

> very different from OO programming
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“Hello World"

Cross-compile for a
specific WSN platform

$ make telosb—
compiled BlinkAppC to build/telosb/main.exe
2648 bytes in ROM
54 bytes in RAM
msp430-objcopy —output-target=ihex build/telosb/
main.exe build/telosb/main.ihex
writing TOS image
$ make telosb install, 0 bsl,/dev/ttyUSB0O
/]

Node id USB port the node

is attached to

e Use “motelist” command to determine USB port
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TinyOS and NesC

Programming (cont.)

TinyOS and NesC
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Asynchronous Programming Model

event void Boot.booted() { void main() {
call BlinkTimer.startPeriodic(1000); while() {
sleep(1);
event void BlinkTimer.fired() { printf('hello’);
call Leds.led0Toggle(); }
} }

e TinyOS:
» Asynchronous programing (split phase)
» No blocking calls
e Not synchronous
> Result:

e Memory efficient concurrency
If execution is neither in booted nor in fired, it will “return” to the OS
No context switch required

e Users must avoid endless loops etc.
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Tasks

TinyOS has a single stack:

> Lon-running computation can reduce

responsiveness

Tasks: mechanism to defer computation
» Tells TinyOS “do this later”

Tasks run until completion

» Tasks do not interrupt each other

//

» TinyOS scheduler runs them one by one in | ()

the order of their post
> Keep them short!

Interrupts run on stack, can post tasks ¥

/] ...

> Interrupts can interrupt tasks

{

task

event

void compute () {
// do something;

Timer.fired

void

post compute()

e Interrupts: low level hardware events
> Interrupts can interrupt each other

e See interrupt priority
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TOSSIM

@ TinyOS mote SIMulator
> Allows NesC code to run on a standard machine
e Linux etc.
> Includes models for

e Communication
e Sensing
[ ]

» Compiles directly from TinyOS source

® Run the same code in simulator and sensor node
e Good for testing before deployment

@ See TinyOS website for details
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Code examples

@ TinyOS has an “apps” folder
» Many good examples

@ Other sources of information

» TinyOS Book

e TinyOS Programming by Philip Levis, David Gay

e In part: csl.stanford.edu/~ pal/pubs/tinyos-programming.pdf
TinyOS web book

e csl.stanford.edu/~ pal/pubs/tos-programming-web.pdf
TinyOS tutorial

e IPSN 2009 (enl.usc.edu/talks/cache/tinyos-ipsn2009.ppt)
TinyOS website: http://www.tinyos.net/
TinyOS mailing list (and its archives)

e On the TinyOS website

v

v

vy
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Hands-On

Programming (cont.)

Hands-On
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Your Tasks

1. System test

> Install Blink on your sensor node

e See apps/Blink
e Compile, install (see prev. slides, see tutorial from TA)

2. Main task:
> Program Anti-Theft App for your sensor node
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Your Main Task

o Goal: write an anti-theft device
» Detect when someone steels your sensor node

o Two parts:

» Detecting theft

e Assume: thieves put the motes in their pockets
® So, a “dark” mote is a stolen mote
e Every N ms check if light sensor is below some threshold

> Reporting theft
e Assume: bright flashing lights deter thieves
o Theft reporting algorithm: light the red LED for a little while!
o What you will use

» Basic components, interfaces, wiring
» Essential system interfaces for startup, timing, sensor sampling

o Start from Blink

> In apps/Blink
> See apps/RadioSensoTolLeds on sensor use

e Replace “DemoSensorC" with “HamamatsuS10871ParC” or
“HamamatsuS10871TsrC"”
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The Basics - Let's Get Started

interface Boot {

le AntiThef
module AntiTheftC { e /* Signaled when OS booted */

uses interface Boot; t void booted():
uses interface Timer<TMilli> as Check; ) ez 7efel ez ()

uses interface Read<uint16_t>;
) Y
impl i - :
Impeevr:z:tntvaotilc(i)nB{oot booted() { sSAEE TS 25> |
call Check stértPeriodic(lOOO)- command void startOneShot(uint32_t perioc
' ' command void startPeriodic(uint32_t period

} e,
event void Check.fired() { euenfl ver] {fedil),
call Read.read(); !
} Components start with a signature specifying
event void Read.readDone(error { - the interfaces provided by the component
if (ok == SUCCESS && val - the interfaces used by the component
theftLed(); A module is a component implemented in C
} - with functions implementing commmands and
} events
- and extensions to call commands, events
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The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;

uses interface Timer<TMilli> as Check;
uses interface Read<<uint16_t>;

implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);

event void Check.fired() {
call Read.read();

}

In TinyOS, all long-running operations are
split-phase:

- A command starts the op: read

- An event signals op completion: readDone

event void Read.readDone(error_t ok, uintl6_t val) {
if (ok == SUCCESS && val < 200)

theftLed();

Carlo Fischione (KTH)

interface Read< val_t > {
command error_t read();
event void readDone(error_t ok, val_t val);

}
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The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;

uses interface Timer<TMilli> as Check;
uses interface Read<uint16_t>;

implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);

event void Check.fired() {
call Read.read();

}

In TinyOS, all long-running operations are
split-phase:

- A command starts the op: read

- An event signals op completion: readDone

event void Read.readDone(error_t ok, uintl6_t val) {
if (ok == SUCCESS && val < 200)

theftLed();
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interface Read< val_t > {
command error_t read();
event void readDone(error_t ok, val_t val);

}
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The Basics - Configurations

configuration AntiTheftAppC }
implementation

generic configuration TimerMilliC() {
provides interface Timer<TMilli>;

implementation { ...}

{

components AntiTheftC, MainC, LedsC;

AntiTheftC.Boot -> MainC.Boot;
AntiTheftC.Leds -> LedsC;

components new TimerMilliC() as MyTimer;
AntiTheftC.Check -> MyTimer;

components new HamamatsuS10871ParC();
AntiTheftC.Read -> HamamatsuS10871ParC;

generic configuration PhotoC() {
provides interface Read;
}

implementation { ...}

} A configuration is a component built out of other
components.

It wires “used” to “provided” interfaces.
It can instantiate generic components

It can itself provide and use interfaces
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Thanks!

Questions?
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@ These slides are based on slides from

» Olaf Landsiedel, Phil Levis, David Gay, David Culler, Luca Mottola, Hamad
Alizai, and many others
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