Principles of Wireless Sensor Networks
https://www.kth.se/social /course/EL2745/

Lecture 2
Introduction to Programming WSNs

Carlo Fischione
Associate Professor of Sensor Networks
e-mail:carlofi@kth.se
http://www.ee kth.se/~carlofi/

s,

FKTHY

& verenoar
g s &

™

KTH Royal Institute of Technology
Stockholm, Sweden

September 8, 2014

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 1/32

https://www.kth.se/social/course/EL2745/
carlofi@kth.se
http://www.ee.kth.se/~carlofi/

Course content

e Partl

» Lec 1: Introduction to WSNs
» Lec 2: Introduction to Programming WSNs

o Part 2

> Lec 3: Wireless Channel

> Lec 4: Physical Layer

> Lec 5: Medium Access Control Layer
> Lec 6: Routing

o Part 3

Lec 7: Distributed Detection

Lec 8: Static Distributed Estimation
Lec 9: Dynamic Distributed Estimation
Lec 10: Positioning and Localization
Lec 11: Time Synchronization

Yy Yy VvV VY

e Part 4

> Lec 12: Wireless Sensor Network Control Systems 1
> Lec 13: Wireless Sensor Network Control Systems 2
» Lec 14: Summary and Project Presentations

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014

2/32

Today's Lecture

WSN Programming

Introduction

Carlo Fischione (KTH) Networks September 8, 2014 3/32

Programming WSNs

@ What do we need to write software for WSNs?
(or: for any system, like your laptop, cell phone?)
» Programming language
o With compiler, etc.
» OS/runtime libraries
® Access to system resources
o APIls: Communication, sensors, etc.
@ Put Windows 7 on a sensor node?

» Or Linux, Android, ...
» Use Java, Python, ... as programming languages?
» WSNs are embedded systems

e Resource constraints

Carlo Fischione (KTH) Principles of Wireless Sensor Networks

>

CPU 16bit, 8 MHz

RAM 10kB
ROM 48kB
Flash 1MB
Batteries 2xAA

September 8, 2014

4/32

Today's Topics

@ NesC
» Programming Language for WSNs

e TinyOS

» WSN OS/runtime
» Note: many other OS exist (Contiki, Mantis, LiteOS, Nano-RK, ...)

e TinyOS: widespread, especially in academia

Examples

Hands-on

» Your turn!

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 5/32

TinyOS and NesC

TinyOS and NesC
Component Model

Carlo Fischione (KTH) Networks September 8, 2014 6 /32

TinyOS Components

e TinyOS and its applications are written in NesC

» C dialect with extra features: mainly Components
@ Basic unit of NesC code is a Component

o Components connect via Interfaces
» Connections called “wiring”
> Interfaces:

® Access to the functions of component
e Provide functionality to the outside
e Similar to Interfaces in Java etc.

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 7/32

TinyOS Components

B provides
functionality
Example:
-Turn on LED
-Send packet

A uses functionality Interface | describes
provided by B the “API”

Example: To send a

packet

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 8 /32

TinyOS Components

Two types of components
o Modules (M):

> Base type
» Contains functionality / implementations:
“The real code”

o Configurations (C): .ﬁ@@@

» Contain multiple sub-components
Modules or Configurations: Nesting
» Describe connections
Which module uses the function W @ o
» Parameterize sub-components: =
Options, etc.

@ Very similar to classes in Java etc.

> But static
> No instantiation at runtime (new “new()"”)

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 9/32

TinyOS Components

o Components

> use or provide interfaces
» Use : component uses func. of others
» Provide : provide func. to others

o Interfaces contain

» The API
» Contain commands and events

Function calls Cc | Events
Use Call Command Implement Event Handler
Provide Implement Command Body Signal Event

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 10 / 32

TinyOS Modules

@ Specification

> List of interfaces the component

e Provides:
Functionality it provides to
others

e Uses:
Functionality of others it uses

» Alias interfaces as new name
@ Implementation

» Commands of provided interfaces
» Events of used interfaces

module FooM {

//Specification

provides {
interface Foo;

I3

uses {
interface Poo as PooFoo;
interface Boo;

}

//Implementation
implementation {
//Command handlers
command result_t Foo.comm{

//Event handlers
event void Boo.event{

.

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014

11/ 32

TinyOS Modules

init start stop fired

VW VWV W /.

Timer

-Tasks m

Command
handlers .F

handlers

\ 4 ZXN

setRate fire

Carlo Fischione (KTH) Principles of Wireless Sensor Networks

September 8, 2014

12 /32

Example

TinyOS and NesC

Example: Hello World

September 8, 2014 13 /32

Example: “Hello World"

@ No screen, we cannot print “Hello World” ...

@ ...So, let them periodically blink the LEDs!

o Ingredients:
> A timer to trigger the periodic blinking
e TOS provides a Timer library
» A way to turn the LEDs on and off
o TOS provides a LedsC component to control the LEDs

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 14 / 32

“Hello World"

interface Leds {

command void led0On();
Called to ™ command void led0OfF();
control a led command void led0Toggle();

/- TMicro, T32Khz

Can be TMilli,

interface Timer <precision> {
command void startPeriodic(uint32_t dt);
command void startOneShot(uint32_t dt);
event void fired();

Called to
start a timer

Signaled when

the timer expires

Carlo Fischione (KTH) Principles of Wireless Sensor Networks

Timer with
millisecond
precision

“Hello World"

module BlinkC {
uses interface Timer<TMilli> as BlinkTimer;
uses interface Leds;
uses interface Boot;

Signaled when

hw ready

}

implementation {
event void Boot.booted() {

call | BlinkTimer startPeriodic(1000);

}

event void \ BlinkTimer.fired() \ {
call Leds.led0Toggle();

}
}

Carlo Fischione (KTH) Principles of Wireless Sensor Networks

startPeriodic()

Application

Signals
fired()

No interfaces
used or provided

“Hello World"

configuration BlinkAppC {}
Provides Boot
implementation {
components MainC,
BlinkC,
LedsC;
components new ‘ TimerMilliC as Timer0;

TimerMilliC is
a generic com-
ponent: can

be instantiated

BlinkC -> MainC.Boot; . multiple times!
BlinkC.BlinkTimer -> Timer0; Wirings
BlinkC.Leds -> LedsC;

@ Instantiation is done at compile-time

> very different from OO programming

Carlo Fischione (KTH) Principles of Wireless Sensor Networks

“Hello World"

Cross-compile for a
specific WSN platform

$ make telosb—
compiled BlinkAppC to build/telosb/main.exe
2648 bytes in ROM
54 bytes in RAM
msp430-objcopy —output-target=ihex build/telosb/
main.exe build/telosb/main.ihex
writing TOS image
$ make telosb install, 0 bsl,/dev/ttyUSB0O
/]

Node id USB port the node

is attached to

e Use “motelist” command to determine USB port

Carlo Fischione (KTH) Principles of Wireless Sensor Networks

TinyOS and NesC

Programming (cont.)

TinyOS and NesC

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 19 / 32

Asynchronous Programming Model

event void Boot.booted() { void main() {
call BlinkTimer.startPeriodic(1000); while() {
sleep(1);
event void BlinkTimer.fired() { printf('hello’);
call Leds.led0Toggle(); }
} }

e TinyOS:
» Asynchronous programing (split phase)
» No blocking calls
e Not synchronous
> Result:

e Memory efficient concurrency
If execution is neither in booted nor in fired, it will “return” to the OS
No context switch required

e Users must avoid endless loops etc.

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 20 /32

Tasks

TinyOS has a single stack:

> Lon-running computation can reduce

responsiveness

Tasks: mechanism to defer computation
» Tells TinyOS “do this later”

Tasks run until completion

» Tasks do not interrupt each other

//

» TinyOS scheduler runs them one by one in | ()

the order of their post
> Keep them short!

Interrupts run on stack, can post tasks ¥

/] ...

> Interrupts can interrupt tasks

{

task

event

void compute () {
// do something;

Timer.fired

void

post compute()

e Interrupts: low level hardware events
> Interrupts can interrupt each other

e See interrupt priority

Carlo Fischione (KTH)

Principles of Wireless Sensor Networks

September 8, 2014

21/ 32

TOSSIM

@ TinyOS mote SIMulator
> Allows NesC code to run on a standard machine
e Linux etc.
> Includes models for

e Communication
e Sensing
[]

» Compiles directly from TinyOS source

® Run the same code in simulator and sensor node
e Good for testing before deployment

@ See TinyOS website for details

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 22 /32

Code examples

@ TinyOS has an “apps” folder
» Many good examples

@ Other sources of information

» TinyOS Book

e TinyOS Programming by Philip Levis, David Gay

e In part: csl.stanford.edu/~ pal/pubs/tinyos-programming.pdf
TinyOS web book

e csl.stanford.edu/~ pal/pubs/tos-programming-web.pdf
TinyOS tutorial

e IPSN 2009 (enl.usc.edu/talks/cache/tinyos-ipsn2009.ppt)
TinyOS website: http://www.tinyos.net/
TinyOS mailing list (and its archives)

e On the TinyOS website

v

v

vy

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 23 /32

enl.usc.edu/talks/cache/tinyos-ipsn2009.ppt
http://www.tinyos.net/

Hands-On

Programming (cont.)

Hands-On

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 24 /32

Your Tasks

1. System test

> Install Blink on your sensor node

e See apps/Blink
e Compile, install (see prev. slides, see tutorial from TA)

2. Main task:
> Program Anti-Theft App for your sensor node

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 25 /32

Your Main Task

o Goal: write an anti-theft device
» Detect when someone steels your sensor node

o Two parts:

» Detecting theft

e Assume: thieves put the motes in their pockets
® So, a “dark” mote is a stolen mote
e Every N ms check if light sensor is below some threshold

> Reporting theft
e Assume: bright flashing lights deter thieves
o Theft reporting algorithm: light the red LED for a little while!
o What you will use

» Basic components, interfaces, wiring
» Essential system interfaces for startup, timing, sensor sampling

o Start from Blink

> In apps/Blink
> See apps/RadioSensoTolLeds on sensor use

e Replace “DemoSensorC" with “HamamatsuS10871ParC” or
“HamamatsuS10871TsrC"”

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 26 /32

The Basics - Let's Get Started

interface Boot {

le AntiThef
module AntiTheftC { e /* Signaled when OS booted */

uses interface Boot; t void booted():
uses interface Timer<TMilli> as Check;) ez 7efel ez ()

uses interface Read<uint16_t>;
) Y
impl i - :
Impeevr:z:tntvaotilc(i)nB{oot booted() { sSAEE TS 25> |
call Check stértPeriodic(lOOO)- command void startOneShot(uint32_t perioc
' ' command void startPeriodic(uint32_t period

} e,
event void Check.fired() { euenfl ver] {fedil),
call Read.read(); !
} Components start with a signature specifying
event void Read.readDone(error { - the interfaces provided by the component
if (ok == SUCCESS && val - the interfaces used by the component
theftLed(); A module is a component implemented in C
} - with functions implementing commmands and
} events
- and extensions to call commands, events

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 27 /32

The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;

uses interface Timer<TMilli> as Check;
uses interface Read<<uint16_t>;

implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);

event void Check.fired() {
call Read.read();

}

In TinyOS, all long-running operations are
split-phase:

- A command starts the op: read

- An event signals op completion: readDone

event void Read.readDone(error_t ok, uintl6_t val) {
if (ok == SUCCESS && val < 200)

theftLed();

Carlo Fischione (KTH)

interface Read< val_t > {
command error_t read();
event void readDone(error_t ok, val_t val);

}

Principles of Wireless Sensor Networks September 8, 2014

28 / 32

The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;

uses interface Timer<TMilli> as Check;
uses interface Read<uint16_t>;

implementation {
event void Boot.booted() {

call Check.startPeriodic(1000);

event void Check.fired() {
call Read.read();

}

In TinyOS, all long-running operations are
split-phase:

- A command starts the op: read

- An event signals op completion: readDone

event void Read.readDone(error_t ok, uintl6_t val) {
if (ok == SUCCESS && val < 200)

theftLed();

Carlo Fischione (KTH)

interface Read< val_t > {
command error_t read();
event void readDone(error_t ok, val_t val);

}

Principles of Wireless Sensor Networks September 8, 2014

29 / 32

The Basics - Configurations

configuration AntiTheftAppC }
implementation

generic configuration TimerMilliC() {
provides interface Timer<TMilli>;

implementation { ...}

{

components AntiTheftC, MainC, LedsC;

AntiTheftC.Boot -> MainC.Boot;
AntiTheftC.Leds -> LedsC;

components new TimerMilliC() as MyTimer;
AntiTheftC.Check -> MyTimer;

components new HamamatsuS10871ParC();
AntiTheftC.Read -> HamamatsuS10871ParC;

generic configuration PhotoC() {
provides interface Read;
}

implementation { ...}

} A configuration is a component built out of other
components.

It wires “used” to “provided” interfaces.
It can instantiate generic components

It can itself provide and use interfaces

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014

30 / 32

Thanks!

Questions?

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 31/32

@ These slides are based on slides from

» Olaf Landsiedel, Phil Levis, David Gay, David Culler, Luca Mottola, Hamad
Alizai, and many others

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 32/32

