
Principles of Wireless Sensor Networks
https://www.kth.se/social/course/EL2745/

Lecture 2

Introduction to Programming WSNs

Carlo Fischione
Associate Professor of Sensor Networks

e-mail:carlofi@kth.se
http://www.ee.kth.se/∼carlofi/

KTH Royal Institute of Technology
Stockholm, Sweden

September 8, 2014

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 1 / 32

https://www.kth.se/social/course/EL2745/
carlofi@kth.se
http://www.ee.kth.se/~carlofi/


Course content

Part 1

I Lec 1: Introduction to WSNs
I Lec 2: Introduction to Programming WSNs

Part 2

I Lec 3: Wireless Channel
I Lec 4: Physical Layer
I Lec 5: Medium Access Control Layer
I Lec 6: Routing

Part 3

I Lec 7: Distributed Detection
I Lec 8: Static Distributed Estimation
I Lec 9: Dynamic Distributed Estimation
I Lec 10: Positioning and Localization
I Lec 11: Time Synchronization

Part 4

I Lec 12: Wireless Sensor Network Control Systems 1
I Lec 13: Wireless Sensor Network Control Systems 2
I Lec 14: Summary and Project Presentations

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 2 / 32



Today’s Lecture

WSN Programming
Introduction

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 3 / 32



Programming WSNs

What do we need to write software for WSNs?
(or: for any system, like your laptop, cell phone?)

I Programming language
• With compiler, etc.

I OS/runtime libraries
• Access to system resources
• APIs: Communication, sensors, etc.

Put Windows 7 on a sensor node?

I Or Linux, Android, ...
I Use Java, Python, ... as programming languages?
I WSNs are embedded systems

• Resource constraints

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 4 / 32



Today’s Topics

NesC

I Programming Language for WSNs

TinyOS

I WSN OS/runtime
I Note: many other OS exist (Contiki, Mantis, LiteOS, Nano-RK, ...)

• TinyOS: widespread, especially in academia

Examples

Hands-on

I Your turn!

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 5 / 32



TinyOS and NesC

TinyOS and NesC

Component Model

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 6 / 32



TinyOS Components

TinyOS and its applications are written in NesC

I C dialect with extra features: mainly Components

Basic unit of NesC code is a Component

Components connect via Interfaces

I Connections called “wiring”
I Interfaces:

• Access to the functions of component
• Provide functionality to the outside
• Similar to Interfaces in Java etc.

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 7 / 32



TinyOS Components

B provides
functionality
Example:
-Turn on LED
-Send packet

BA

I

A uses functionality
provided by B
Example: To send a
packet

Interface I describes
the “API”

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 8 / 32



TinyOS Components

Two types of components

Modules (M):

I Base type
I Contains functionality / implementations:

“The real code”

Configurations (C):

I Contain multiple sub-components
Modules or Configurations: Nesting

I Describe connections
Which module uses the function

I Parameterize sub-components:
Options, etc.

Very similar to classes in Java etc.

I But static
I No instantiation at runtime (new “new()”)

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 9 / 32



TinyOS Components

Components

I use or provide interfaces
I Use : component uses func. of others
I Provide : provide func. to others

Interfaces contain

I The API
I Contain commands and events

Function calls Commands Events
Use Call Command Implement Event Handler

Provide Implement Command Body Signal Event

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 10 / 32



TinyOS Modules

Specification

I List of interfaces the component
• Provides:

Functionality it provides to
others

• Uses:
Functionality of others it uses

I Alias interfaces as new name

Implementation

I Commands of provided interfaces
I Events of used interfaces

module FooM {
//Specification
provides {

interface Foo;
}
uses {

interface Poo as PooFoo;
interface Boo;

}
}
//Implementation
implementation {

//Command handlers
command result t Foo.comm{

. . .
}
//Event handlers
event void Boo.event{

. . .
}

}
Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 11 / 32



TinyOS Modules

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 12 / 32



Example

TinyOS and NesC

Example: Hello World

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 13 / 32



Example: “Hello World”

No screen, we cannot print “Hello World” . . .

. . . So, let them periodically blink the LEDs!

Ingredients:

I A timer to trigger the periodic blinking
• TOS provides a Timer library

I A way to turn the LEDs on and off
• TOS provides a LedsC component to control the LEDs

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 14 / 32



“Hello World”

interface Leds {
command void led0On();
command void led0Off();
command void led0Toggle();
// . . .

}

interface Timer <precision> {
command void startPeriodic(uint32 t dt);
command void startOneShot(uint32 t dt);
event void fired();
// . . .

}

Called to
control a led

Can be TMilli,
TMicro, T32Khz

Signaled when
the timer expires

Called to
start a timer

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 15 / 32



“Hello World” Timer with
millisecond
precision

Signaled when
hw ready

C
al

ls
st

ar
tP

er
io

d
ic

()

Signals
fired()

module BlinkC {
uses interface Timer<TMilli> as BlinkTimer;
uses interface Leds;
uses interface Boot;

}

implementation {
event void Boot.booted() {

call BlinkTimer.startPeriodic(1000);

}

event void BlinkTimer.fired() {
call Leds.led0Toggle();

}
}

Application

Timers

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 16 / 32



“Hello World” No interfaces
used or provided

Provides Boot

TimerMilliC is
a generic com-
ponent: can
be instantiated
multiple times!

Wirings

configuration BlinkAppC {}

implementation {
components MainC,

BlinkC,
LedsC;

components new TimerMilliC as Timer0;

BlinkC -> MainC.Boot;
BlinkC.BlinkTimer -> Timer0;
BlinkC.Leds -> LedsC;

}

Instantiation is done at compile-time

I very different from OO programming

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 17 / 32



“Hello World”
Cross-compile for a
specific WSN platform

Node id USB port the node
is attached to

$ make telosb
// . . .
compiled BlinkAppC to build/telosb/main.exe

2648 bytes in ROM
54 bytes in RAM

msp430-objcopy –output-target=ihex build/telosb/
main.exe build/telosb/main.ihex

writing TOS image
$ make telosb install, 0 bsl,/dev/ttyUSB0

// . . .

Use “motelist” command to determine USB port

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 18 / 32



TinyOS and NesC

Programming (cont.)

TinyOS and NesC

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 19 / 32



Asynchronous Programming Model

event void Boot.booted() {
call BlinkTimer.startPeriodic(1000);

}
event void BlinkTimer.fired() {

call Leds.led0Toggle();
}

void main() {
while() {

sleep(1);
printf(’hello’);

}
}

TinyOS:

I Asynchronous programing (split phase)
I No blocking calls

• Not synchronous
I Result:

• Memory efficient concurrency
If execution is neither in booted nor in fired, it will “return” to the OS
No context switch required

• Users must avoid endless loops etc.

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 20 / 32



Tasks

TinyOS has a single stack:

I Lon-running computation can reduce
responsiveness

Tasks: mechanism to defer computation

I Tells TinyOS “do this later”

Tasks run until completion

I Tasks do not interrupt each other
I TinyOS scheduler runs them one by one in

the order of their post
I Keep them short!

Interrupts run on stack, can post tasks

I Interrupts can interrupt tasks
• Interrupts: low level hardware events

I Interrupts can interrupt each other
• See interrupt priority

// . . .
task void compute () {

// do something;
}

event void Timer.fired
()
{

post compute()
}
// . . .

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 21 / 32



TOSSIM

TinyOS mote SIMulator

I Allows NesC code to run on a standard machine
• Linux etc.

I Includes models for
• Communication
• Sensing
• . . .

I Compiles directly from TinyOS source
• Run the same code in simulator and sensor node
• Good for testing before deployment

See TinyOS website for details

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 22 / 32



Code examples

TinyOS has an “apps” folder

I Many good examples

Other sources of information

I TinyOS Book
• TinyOS Programming by Philip Levis, David Gay
• In part: csl.stanford.edu/∼ pal/pubs/tinyos-programming.pdf

I TinyOS web book
• csl.stanford.edu/∼ pal/pubs/tos-programming-web.pdf

I TinyOS tutorial
• IPSN 2009 (enl.usc.edu/talks/cache/tinyos-ipsn2009.ppt)

I TinyOS website: http://www.tinyos.net/
I TinyOS mailing list (and its archives)

• On the TinyOS website

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 23 / 32

enl.usc.edu/talks/cache/tinyos-ipsn2009.ppt
http://www.tinyos.net/


Hands-On

Programming (cont.)

Hands-On

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 24 / 32



Your Tasks

1. System test

I Install Blink on your sensor node
• See apps/Blink
• Compile, install (see prev. slides, see tutorial from TA)

2. Main task:

I Program Anti-Theft App for your sensor node

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 25 / 32



Your Main Task

Goal: write an anti-theft device

I Detect when someone steels your sensor node

Two parts:

I Detecting theft
• Assume: thieves put the motes in their pockets
• So, a “dark” mote is a stolen mote
• Every N ms check if light sensor is below some threshold

I Reporting theft
• Assume: bright flashing lights deter thieves
• Theft reporting algorithm: light the red LED for a little while!

What you will use

I Basic components, interfaces, wiring
I Essential system interfaces for startup, timing, sensor sampling

Start from Blink

I In apps/Blink
I See apps/RadioSensoToLeds on sensor use

• Replace “DemoSensorC” with “HamamatsuS10871ParC” or
“HamamatsuS10871TsrC”

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 26 / 32



The Basics - Let’s Get Started

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16 t>;

}
implementation {

event void Boot.booted() {
call Check.startPeriodic(1000);

}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error t ok, uint16 t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 27 / 32

interface Boot {
/* Signaled when OS booted */
event void booted();

}

interface Timer< tag> {
command void startOneShot(uint32 t period)
command void startPeriodic(uint32 t period)
event void fired();

}

Components start with a signature specifying
- the interfaces provided by the component
- the interfaces used by the component

A module is a component implemented in C
- with functions implementing commmands and

events
- and extensions to call commands, events



The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16 t>;

}
implementation {

event void Boot.booted() {
call Check.startPeriodic(1000);

}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error t ok, uint16 t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 28 / 32

In TinyOS, all long-running operations are
split-phase:
- A command starts the op: read
- An event signals op completion: readDone

interface Read< val t > {
command error t read();
event void readDone(error t ok, val t val);

}



The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16 t>;

}
implementation {

event void Boot.booted() {
call Check.startPeriodic(1000);

}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error t ok, uint16 t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 29 / 32

In TinyOS, all long-running operations are
split-phase:
- A command starts the op: read
- An event signals op completion: readDone

interface Read< val t > {
command error t read();
event void readDone(error t ok, val t val);

}



The Basics - Configurations

configuration AntiTheftAppC
implementation
{

components AntiTheftC, MainC, LedsC;

AntiTheftC.Boot -> MainC.Boot;
AntiTheftC.Leds -> LedsC;

components new TimerMilliC() as MyTimer;
AntiTheftC.Check -> MyTimer;

components new HamamatsuS10871ParC();
AntiTheftC.Read -> HamamatsuS10871ParC;

}

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 30 / 32

generic configuration TimerMilliC() {
provides interface Timer<TMilli>;

}
implementation { . . . }

generic configuration PhotoC() {
provides interface Read;

}
implementation { . . . }

A configuration is a component built out of other
components.
It wires “used” to “provided” interfaces.
It can instantiate generic components
It can itself provide and use interfaces



Thanks!

Questions?

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 31 / 32



These slides are based on slides from

I Olaf Landsiedel, Phil Levis, David Gay, David Culler, Luca Mottola, Hamad
Alizai, and many others

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 32 / 32


