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Course content

Part 1

I Lec 1: Introduction to WSNs
I Lec 2: Introduction to Programming WSNs

Part 2

I Lec 3: Wireless Channel
I Lec 4: Physical Layer
I Lec 5: Medium Access Control Layer
I Lec 6: Routing

Part 3

I Lec 7: Distributed Detection
I Lec 8: Static Distributed Estimation
I Lec 9: Dynamic Distributed Estimation
I Lec 10: Positioning and Localization
I Lec 11: Time Synchronization

Part 4

I Lec 12: Wireless Sensor Network Control Systems 1
I Lec 13: Wireless Sensor Network Control Systems 2
I Lec 14: Summary and Project Presentations
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Today’s Lecture

WSN Programming
Introduction

Carlo Fischione (KTH) Principles of Wireless Sensor Networks September 8, 2014 3 / 32



Programming WSNs

What do we need to write software for WSNs?
(or: for any system, like your laptop, cell phone?)

I Programming language
• With compiler, etc.

I OS/runtime libraries
• Access to system resources
• APIs: Communication, sensors, etc.

Put Windows 7 on a sensor node?

I Or Linux, Android, ...
I Use Java, Python, ... as programming languages?
I WSNs are embedded systems

• Resource constraints
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Today’s Topics

NesC

I Programming Language for WSNs

TinyOS

I WSN OS/runtime
I Note: many other OS exist (Contiki, Mantis, LiteOS, Nano-RK, ...)

• TinyOS: widespread, especially in academia

Examples

Hands-on

I Your turn!
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TinyOS and NesC

TinyOS and NesC

Component Model
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TinyOS Components

TinyOS and its applications are written in NesC

I C dialect with extra features: mainly Components

Basic unit of NesC code is a Component

Components connect via Interfaces

I Connections called “wiring”
I Interfaces:

• Access to the functions of component
• Provide functionality to the outside
• Similar to Interfaces in Java etc.
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TinyOS Components

B provides
functionality
Example:
-Turn on LED
-Send packet

BA

I

A uses functionality
provided by B
Example: To send a
packet

Interface I describes
the “API”
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TinyOS Components

Two types of components

Modules (M):

I Base type
I Contains functionality / implementations:

“The real code”

Configurations (C):

I Contain multiple sub-components
Modules or Configurations: Nesting

I Describe connections
Which module uses the function

I Parameterize sub-components:
Options, etc.

Very similar to classes in Java etc.

I But static
I No instantiation at runtime (new “new()”)
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TinyOS Components

Components

I use or provide interfaces
I Use : component uses func. of others
I Provide : provide func. to others

Interfaces contain

I The API
I Contain commands and events

Function calls Commands Events
Use Call Command Implement Event Handler

Provide Implement Command Body Signal Event
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TinyOS Modules

Specification

I List of interfaces the component
• Provides:

Functionality it provides to
others

• Uses:
Functionality of others it uses

I Alias interfaces as new name

Implementation

I Commands of provided interfaces
I Events of used interfaces

module FooM {
//Specification
provides {

interface Foo;
}
uses {

interface Poo as PooFoo;
interface Boo;

}
}
//Implementation
implementation {

//Command handlers
command result t Foo.comm{

. . .
}
//Event handlers
event void Boo.event{

. . .
}

}
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TinyOS Modules
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Example

TinyOS and NesC

Example: Hello World
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Example: “Hello World”

No screen, we cannot print “Hello World” . . .

. . . So, let them periodically blink the LEDs!

Ingredients:

I A timer to trigger the periodic blinking
• TOS provides a Timer library

I A way to turn the LEDs on and off
• TOS provides a LedsC component to control the LEDs
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“Hello World”

interface Leds {
command void led0On();
command void led0Off();
command void led0Toggle();
// . . .

}

interface Timer <precision> {
command void startPeriodic(uint32 t dt);
command void startOneShot(uint32 t dt);
event void fired();
// . . .

}

Called to
control a led

Can be TMilli,
TMicro, T32Khz

Signaled when
the timer expires

Called to
start a timer
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“Hello World” Timer with
millisecond
precision

Signaled when
hw ready

C
al

ls
st

ar
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d
ic

()

Signals
fired()

module BlinkC {
uses interface Timer<TMilli> as BlinkTimer;
uses interface Leds;
uses interface Boot;

}

implementation {
event void Boot.booted() {

call BlinkTimer.startPeriodic(1000);

}

event void BlinkTimer.fired() {
call Leds.led0Toggle();

}
}

Application

Timers
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“Hello World” No interfaces
used or provided

Provides Boot

TimerMilliC is
a generic com-
ponent: can
be instantiated
multiple times!

Wirings

configuration BlinkAppC {}

implementation {
components MainC,

BlinkC,
LedsC;

components new TimerMilliC as Timer0;

BlinkC -> MainC.Boot;
BlinkC.BlinkTimer -> Timer0;
BlinkC.Leds -> LedsC;

}

Instantiation is done at compile-time

I very different from OO programming
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“Hello World”
Cross-compile for a
specific WSN platform

Node id USB port the node
is attached to

$ make telosb
// . . .
compiled BlinkAppC to build/telosb/main.exe

2648 bytes in ROM
54 bytes in RAM

msp430-objcopy –output-target=ihex build/telosb/
main.exe build/telosb/main.ihex

writing TOS image
$ make telosb install, 0 bsl,/dev/ttyUSB0

// . . .

Use “motelist” command to determine USB port
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TinyOS and NesC

Programming (cont.)

TinyOS and NesC
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Asynchronous Programming Model

event void Boot.booted() {
call BlinkTimer.startPeriodic(1000);

}
event void BlinkTimer.fired() {

call Leds.led0Toggle();
}

void main() {
while() {

sleep(1);
printf(’hello’);

}
}

TinyOS:

I Asynchronous programing (split phase)
I No blocking calls

• Not synchronous
I Result:

• Memory efficient concurrency
If execution is neither in booted nor in fired, it will “return” to the OS
No context switch required

• Users must avoid endless loops etc.
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Tasks

TinyOS has a single stack:

I Lon-running computation can reduce
responsiveness

Tasks: mechanism to defer computation

I Tells TinyOS “do this later”

Tasks run until completion

I Tasks do not interrupt each other
I TinyOS scheduler runs them one by one in

the order of their post
I Keep them short!

Interrupts run on stack, can post tasks

I Interrupts can interrupt tasks
• Interrupts: low level hardware events

I Interrupts can interrupt each other
• See interrupt priority

// . . .
task void compute () {

// do something;
}

event void Timer.fired
()
{

post compute()
}
// . . .
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TOSSIM

TinyOS mote SIMulator

I Allows NesC code to run on a standard machine
• Linux etc.

I Includes models for
• Communication
• Sensing
• . . .

I Compiles directly from TinyOS source
• Run the same code in simulator and sensor node
• Good for testing before deployment

See TinyOS website for details
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Code examples

TinyOS has an “apps” folder

I Many good examples

Other sources of information

I TinyOS Book
• TinyOS Programming by Philip Levis, David Gay
• In part: csl.stanford.edu/∼ pal/pubs/tinyos-programming.pdf

I TinyOS web book
• csl.stanford.edu/∼ pal/pubs/tos-programming-web.pdf

I TinyOS tutorial
• IPSN 2009 (enl.usc.edu/talks/cache/tinyos-ipsn2009.ppt)

I TinyOS website: http://www.tinyos.net/
I TinyOS mailing list (and its archives)

• On the TinyOS website
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Hands-On

Programming (cont.)

Hands-On
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Your Tasks

1. System test

I Install Blink on your sensor node
• See apps/Blink
• Compile, install (see prev. slides, see tutorial from TA)

2. Main task:

I Program Anti-Theft App for your sensor node
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Your Main Task

Goal: write an anti-theft device

I Detect when someone steels your sensor node

Two parts:

I Detecting theft
• Assume: thieves put the motes in their pockets
• So, a “dark” mote is a stolen mote
• Every N ms check if light sensor is below some threshold

I Reporting theft
• Assume: bright flashing lights deter thieves
• Theft reporting algorithm: light the red LED for a little while!

What you will use

I Basic components, interfaces, wiring
I Essential system interfaces for startup, timing, sensor sampling

Start from Blink

I In apps/Blink
I See apps/RadioSensoToLeds on sensor use

• Replace “DemoSensorC” with “HamamatsuS10871ParC” or
“HamamatsuS10871TsrC”
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The Basics - Let’s Get Started

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16 t>;

}
implementation {

event void Boot.booted() {
call Check.startPeriodic(1000);

}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error t ok, uint16 t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}
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interface Boot {
/* Signaled when OS booted */
event void booted();

}

interface Timer< tag> {
command void startOneShot(uint32 t period)
command void startPeriodic(uint32 t period)
event void fired();

}

Components start with a signature specifying
- the interfaces provided by the component
- the interfaces used by the component

A module is a component implemented in C
- with functions implementing commmands and

events
- and extensions to call commands, events



The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16 t>;

}
implementation {

event void Boot.booted() {
call Check.startPeriodic(1000);

}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error t ok, uint16 t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}
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In TinyOS, all long-running operations are
split-phase:
- A command starts the op: read
- An event signals op completion: readDone

interface Read< val t > {
command error t read();
event void readDone(error t ok, val t val);

}



The Basics - Split-Phase Ops

module AntiTheftC {
uses interface Boot;
uses interface Timer<TMilli> as Check;
uses interface Read<uint16 t>;

}
implementation {

event void Boot.booted() {
call Check.startPeriodic(1000);

}
event void Check.fired() {

call Read.read();
}
event void Read.readDone(error t ok, uint16 t val) {

if (ok == SUCCESS && val < 200)
theftLed();

}
}
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In TinyOS, all long-running operations are
split-phase:
- A command starts the op: read
- An event signals op completion: readDone

interface Read< val t > {
command error t read();
event void readDone(error t ok, val t val);

}



The Basics - Configurations

configuration AntiTheftAppC
implementation
{

components AntiTheftC, MainC, LedsC;

AntiTheftC.Boot -> MainC.Boot;
AntiTheftC.Leds -> LedsC;

components new TimerMilliC() as MyTimer;
AntiTheftC.Check -> MyTimer;

components new HamamatsuS10871ParC();
AntiTheftC.Read -> HamamatsuS10871ParC;

}
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generic configuration TimerMilliC() {
provides interface Timer<TMilli>;

}
implementation { . . . }

generic configuration PhotoC() {
provides interface Read;

}
implementation { . . . }

A configuration is a component built out of other
components.
It wires “used” to “provided” interfaces.
It can instantiate generic components
It can itself provide and use interfaces



Thanks!

Questions?
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These slides are based on slides from

I Olaf Landsiedel, Phil Levis, David Gay, David Culler, Luca Mottola, Hamad
Alizai, and many others
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