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Probability vs Heuristics

Heuristic

experience-based techniques for problem solving, learning, and
discovery that give a solution which is not guaranteed to be
optimal (Wikipedia)

Typical examples:

Artificial Neural Networks

Decision Trees

Evolutionary methods
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Advantages of Probability Based Methods

Work with sparse training data. More powerful than
deterministic methods - decision trees - when training data is
sparse.

Results are interpretable. More transparent and
mathematically rigorous than methods such as ANN,

Evolutionary methods.

Tool for interpreting other methods. Framework for
formalizing other methods - concept learning, least squares.

Easy to merge different parts of a complex system.
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Example: Automatic Speech Recognition

Speech Signal
Spectral
Analysis

Feature
Extraction

Search
and Match

Recognised Words

Acoustic Models

Lexical Models

Language Models

Representation

Constraints - Knowledge
Decoder
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Different views on probabilities

Axiomatic defines axioms and derives properties

Classical number of ways something can happen over total
number of things that can happen (e.g. dice)

Logical same, but weight the different ways

Frequency frequency of success in repeated experiments

Subjective degree of belief (basis for Bayesian statistics)
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Axiomatic definition of probabilities (Kolmogorov)

Given an event E in a event space F

1 P(E ) ≥ 0 for all E ∈ F

2 sure event Ω: P(Ω) = 1

3 E1,E2, . . . countable sequence of pairwise disjoint events, then

E1 ∪ E2 ∪ · · ·

E1

E2

· · ·

P(E1 ∪ E2 ∪ · · · ) =
∞�

i=1

P(Ei )
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Consequences

1 Monotonicity: P(A) ≤ P(B) if A ⊆ B

B

A

Example: A = {3}, B = {odd}
2 Empty set ∅: P(∅) = 0

Example: P(A ∩ B) where A = {odd},B = {even}
3 Bounds: 0 ≤ P(E ) ≤ 1 for all E ∈ F
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More Consequences: Addition

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

A B

A ∪ B

A ∩ B

Example:

A = {1, 3, 5}, P(A) = 1
6 + 1

6 + 1
6 = 1

2

B = {5, 6}, P(B) = 1
6 + 1

6 = 1
3

A ∩ B = {5} P(A ∩ B) = 1
6

A ∪ B = {1, 3, 5, 6} P(A ∪ B) = 1
6 + 1

6 + 1
6 + 1

6 = 2
3
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More Consequences: Negation

P(Ā) = P(Ω \ A) = 1− P(A)

Ω

AΩ \ A

Example: A = {1, 2}, P(A) = 1
6 + 1

6 = 1
3

Ā = {3, 4, 5, 6}, P(Ā) = 1
6 + 1

6 + 1
6 + 1

6 = 1− 1
3
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Random (Stochastic) Variables

A random variable is a function that assigns a number x to the
outcome of an experiment

the result of flipping a coin,

the result of measuring the temperature

The probability distribution P(x) of a random variable (r.v.)
captures the fact that

the r.v. will have different values when observed and

some values occur more than others.
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Formal definition of RVs

RV = {f : Sa → Sb,P(x)}
where:

Sa = set of possible outcomes of the experiment

Sb = domain of the variable

f : Sa → Sb = function mapping outcomes to values x

P(x) = probability distribution function
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Types of Random Variables

A discrete random variable takes values from a predefined
set.

For a Boolean discrete random variable this predefined set
has two members - {0, 1}, {yes, no} etc.

A continuous random variable takes values that are real
numbers.

���
� � � � ��

���

���

������������������������

�
��
��
��
���
�

���
��

���

���

�����������������������������������

�
��
��
��
��
���
��
��
��
��

�

���

discrete pdf continuous pdf

Figures taken from Computer Vision: models, learning and inference by Simon Prince.
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Examples of Random Variables

Discrete events: either 1, 2,
3, 4, 5, or 6.

Discrete probability
distribution
p(x) = P(d = x)

P(d = 1) = 1/6 (fair dice)

Any real number
(theoretically infinite)

Probability Distribution
Function (PDF) f (x) (NOT
PROBABILITY!!!)

P(t = 36.6) = 0

P(36.6 < t < 36.7) = 0.1
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Joint Probabilities

Consider two random variables x and y .

Observe multiple paired instances of x and y . Some paired
outcomes will occur more frequently.

This information is encoded in the joint probability
distribution P(x , y).

P(x) denotes the joint probability of x = (x1, . . . , xK ).

← discrete joint pdf

Figure from Computer Vision: models, learning and inference by Simon Prince.
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Joint Probabilities (cont.)

a) b) c)

d) e) f)

Figure from Computer Vision: models, learning and inference by Simon Prince.
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Marginalization

The probability distribution of any single variable can be recovered
from a joint distribution by summing for the discrete case

P(x) =
�

y

P(x , y)

and integrating for the continuous case

P(x) =

�

y
P(x , y) dy
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Marginalization (cont.)

a) b) c)

Figure from Computer Vision: models, learning and inference by Simon Prince.
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Conditional Probabilities

P(A|B)

The probability of event A when we know that event B has
happened

Note: different from the probability that event A and event B
happen
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Conditional Probabilities

P(A|B) �= P(A ∩ B)

Ω

A B

A ∩ B
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Conditional Probabilities

P(A|B) �= P(A ∩ B)

Ω

A B

A ∩ B
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Conditional Probabilities

P(A|B) �= P(A ∩ B)

A B ≡ Ω

A ∩ B
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Conditional Probabilities

P(A|B) =
P(A ∩ B)

P(B)

A B ≡ Ω

A ∩ B
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Conditional Probability (Random Variables)

The conditional probability of x given that y takes value y∗

indicates the different values of r.v. x which we’ll observe
given that y is fixed to value y∗.

The conditional probability can be recovered from the joint
distribution P(x , y):

P(x | y = y∗) =
P(x , y = y∗)

P(y = y∗)
=

P(x , y = y∗)�
x
P(x , y = y∗) dx

Extract an appropriate slice, and then normalize it.

Figure from Computer Vision: models, learning and inference by Simon Prince.
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Bayes’ Rule

if

P(A|B) =
P(A ∩ B)

P(B)

then
P(A ∩ B) = P(A|B)P(B) = P(B |A)P(A)

and

P(A|B) =
P(B |A)P(A)

P(B)
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Bayes’ Rule (random variables)
Bayes’ Rule

P(y | x) = P(x | y)P(y)
P(x)

=
P(x | y)P(y)�
y P(x | y)P(y)

Each term in Bayes’ rule has a name:

P(y | x) ← Posterior (what we know about y given x .)

P(y) ← Prior (what we know about y before we consider x .)

P(x | y) ← Likelihood (propensity for observing a certain value of x

given a certain value of y)

P(x) ← Evidence (a constant to ensure that the l.h.s. is a valid

distribution)
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Bayes’ Rule

In many of our applications y is a discrete variable and x is a
multi-dimensional data vector extracted from the world.

P(y | x) = P(x | y)P(y)
P(x)

Then

P(x | y) ← Likelihood represents the probability of observing data

x given the hypothesis y .

P(y) ← Prior of y represents the background knowledge of

hypothesis y being correct.

P(y | x) ← Posterior represents the probability that hypothesis y is
true after data x has been observed.
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Learning and Inference

Bayesian Inference: The process of calculating the posterior
probability distribution P(y | x) for certain data x.

Bayesian Learning: The process of learning the likelihood
distribution P(x | y) and prior probability distribution P(y)
from a set of training points

{(x1, y1), (x2, y2), . . . , (xn, yn)}
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Example: Which Gender?

Task: Determine the gender of a person given their measured hair
length.

Notation:

Let g ∈ {’f’, ’m’} be a r.v. denoting the gender of a person.

Let x be the measured length of the hair.

Information given:

The hair length observation was made at a boy’s school thus

P(g = ’m’) = .95, P(g = ’f’) = .05

Knowledge of the likelihood distributions P(x | g = ’f’) and P(x | g = ’m’)
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Example: Which Gender?

Task: Determine the gender of a person given their measured hair
length =⇒ calculate P(g | x).

Solution:

Apply Bayes’ Rule to get

P(g = ’m’ | x) = P(x | g = ’m’)P(g = ’m’)

P(x)

=
P(x | g = ’m’)P(g = ’m’)

P(x | g = ’f’)P(g = ’f’) + P(x | g = ’m’)P(g = ’m’)

Can calculate P(g = ’f’ | x) = 1− P(g = ’m’ | x)
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Selecting the most probably hypothesis

Maximum A Posteriori (MAP) Estimate:

Hypothesis with highest probability given observed data

yMAP = argmax
y∈Y

P(y | x)

= argmax
y∈Y

P(x | y)P(y)
P(x)

= argmax
y∈Y

P(x | y)P(y)

Maximum Likelihood Estimate (MLE):

Hypothesis with highest likelihood of generating observed data.

yMLE = argmax
y∈Y

P(x | y)

Useful if we do not know prior distribution or if it is uniform.
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Example: Cancer or Not?

Scenario:
A patient takes a lab test and the result comes back positive. The test returns
a correct positive result in only 98% of the cases in which the disease is actually
present, and a correct negative result in only 97% of the cases in which the
disease is not present. Furthermore, 0.8% of the entire population have cancer.

Scenario in probabilities:

Priors:

P(disease) = .008 P(not disease) = .992

Likelihoods:

P(+ | disease) = .98 P(+ | not disease) = .03

P(− | disease) = .02 P(− | not disease) = .97
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Example: Cancer or Not?

Find MAP estimate:
When test returned a positive result,

yMAP = arg max
y∈{disease, not disease}

P(y |+)

= arg max
y∈{disease, not disease}

P(+ | y)P(y)

Substituting in the correct values get

P(+ | disease)P(disease) = .98× .008 = .0078

P(+ | not disease)P(not disease) = .03× .992 = .0298

Therefore yMAP = ”not disease”.

The Posterior probabilities:

P(disease |+) =
.0078

(.0078 + .0298)
= .21

P(not disease |+) =
.0298

(.0078 + .0298)
= .79
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Bernoulli

Domain: binary variables (x ∈ {0, 1})
Parameters: λ = Pr(x = 1), λ ∈ [0, 1]

Then Pr(x = 0) = 1− λ, and

Pr(x) = λx(1− λ)1−x =

�
λ, if x = 1,
1− λ, if x = 0
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Categorical

Domain: discrete variables (x ∈ {x1, . . . , xK})
Parameters: λ = [λ1, . . . ,λK ]

with λk ∈ [0, 1] and
�K

k=1 λk = 1
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Beta and Dirichlet

Beta

Domain: real numbers, bounded (λ ∈ [0, 1])

Parameters: α,β ∈ R+

describes probability of parameter λ in Bernoulli

Dirichlet

Domain: K real numbers, bounded (λ1, . . . ,λK ∈ [0, 1])

Parameters: α1, . . . ,αK ∈ R+

describes probability of parameters λk in Categorical
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Gaussian distributions: One-dimensional

aka univariate normal distribution

Domain: real numbers (x ∈ R)

f (x |µ,σ2) = N(µ,σ2) =
1√
2πσ

exp

�
−(x − µ)2

2σ2

�

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
0

5

10

15

2σ

µ

x

f(
x
)
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Gaussian distributions: One-dimensional

aka univariate normal distribution

Domain: real numbers (x ∈ R)

f (x |µ,σ2) = N(µ,σ2) =
1√
2πσ

exp

�
−(x − µ)2

2σ2

�

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
0

5

10

15

f(x1) = 8.1

P(x2<x<x3) = 0.15

x

f(
x
)
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Gaussian distributions: D Dimensions

aka multivariate normal distribution

Domain: real numbers (x ∈ RD)

x =




x1
x2
. . .
xD


 µ =




µ1

µ2

. . .
µD


 Σ =




σ11 σ12 . . . σ1D
σ21 . . .
. . .
σD1 . . . σDD




f (x|µ,Σ) = exp
�
−1

2(x− µ)TΣ−1(x− µ)
�

(2π)
D
2 |Σ| 12
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Gaussian distributions

f (x|µ,Σ) = exp
�
−1

2(x− µ)TΣ−1(x− µ)
�

(2π)
D
2 |Σ| 12

Eigenvalue decomposition of the covariance matrix:

Σ = λ R Σdiag RT

x1

x2

x1

x2

x1

x2
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