Lecture 3: Probabilistic Learning DD2431

Giampiero Salvi

Autumn, 2014

Heuristic

experience-based techniques for problem solving, learning, and discovery that give a solution which is not guaranteed to be optimal (Wikipedia)

Typical examples:

- Artificial Neural Networks
- Decision Trees
- Evolutionary methods

- Work with sparse training data. More powerful than deterministic methods - decision trees - when training data is sparse.
- Results are interpretable. More transparent and mathematically rigorous than methods such as ANN,
Evolutionary methods.
- Tool for interpreting other methods. Framework for formalizing other methods - concept learning, least squares.
- Easy to merge different parts of a complex system.

Axiomatic defines axioms and derives properties
Classical number of ways something can happen over total number of things that can happen (e.g. dice)
Logical same, but weight the different ways
Frequency frequency of success in repeated experiments
Subjective degree of belief (basis for Bayesian statistics)

Axiomatic definition of probabilities (Kolmogorov)

Given an event E in a event space F
(1) $P(E) \geq 0$ for all $E \in F$
(2) sure event $\Omega: P(\Omega)=1$
(3) E_{1}, E_{2}, \ldots countable sequence of pairwise disjoint events, then

$$
P\left(E_{1} \cup E_{2} \cup \cdots\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Example: $A=\{3\}, \quad B=\{$ odd $\}$
(2) Empty set $\emptyset: P(\emptyset)=0$

Example: $P(A \cap B)$ where $A=\{$ odd $\}, B=\{$ even $\}$
(3)

Bounds: $0 \leq P(E) \leq 1$ for all $E \in F$

$$
P(\bar{A})=P(\Omega \backslash A)=1-P(A)
$$

Example: $\quad A=\{1,2\}, \quad P(A)=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$ $\bar{A}=\{3,4,5,6\}, \quad P(\bar{A})=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=1-\frac{1}{3}$

$$
R V=\left\{f: \mathcal{S}_{a} \rightarrow \mathcal{S}_{b}, P(x)\right\}
$$

where:
$\mathcal{S}_{a}=$ set of possible outcomes of the experiment
$\mathcal{S}_{b}=$ domain of the variable
$f: \mathcal{S}_{a} \rightarrow \mathcal{S}_{b}=$ function mapping outcomes to values x
$P(x)=$ probability distribution function

A random variable is a function that assigns a number x to the outcome of an experiment

- the result of flipping a coin,
- the result of measuring the temperature

The probability distribution $P(x)$ of a random variable (r.v.) captures the fact that

- the r.v. will have different values when observed and
- some values occur more than others.
$\left.\begin{array}{r|r|}\hline \text { Giampiero Salvi } & \text { Lecture 3: Probabilistic Learning } \\ \text { Probability Theory Basics } \\ \text { Bayesian Inference and Learning } \\ \text { Common Distributions }\end{array}\right)$
- A discrete random variable takes values from a predefined set.
- For a Boolean discrete random variable this predefined set has two members - $\{0,1\}$, $\{$ yes, no $\}$ etc.
- A continuous random variable takes values that are real numbers.

- Discrete events: either 1,2 , $3,4,5$, or 6 .
- Discrete probability distribution $p(x)=P(d=x)$
- $P(d=1)=1 / 6$ (fair dice)
- Any real number (theoretically infinite)
- Probability Distribution Function (PDF) $f(x)$ (NOT PROBABILITY!!!!
- $P(t=36.6)=0$
- $P(36.6<t<36.7)=0.1$

Ciampiero Salvi Lecture 3: Probabilistic Learning

$$
\begin{aligned}
& \text { Probability Theory Basics } \\
& \text { Bayesian Inference and Learning } \\
& \text { Common Distributions }
\end{aligned}
$$

Joint Probabilities (cont.)
a)

x

x

f)

- Consider two random variables x and y.
- Observe multiple paired instances of x and y. Some paired outcomes will occur more frequently.
- This information is encoded in the joint probability distribution $P(x, y)$.
- $P(\mathbf{x})$ denotes the joint probability of $\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right)$.

\leftarrow discrete joint pdf
- $P(x)$ denot

Giampiero Salvi Lecture 3: Probabilistic Learning

Probability Theory Basics
Bayesian Inference and Learning
Common Distributions
Marginalization

The probability distribution of any single variable can be recovered from a joint distribution by summing for the discrete case

$$
P(x)=\sum_{y} P(x, y)
$$

and integrating for the continuous case

$$
P(x)=\int_{y} P(x, y) d y
$$

Probability Theory Basics
Bayesian Inference and Learning
Bayesian Inference and Learning Lecture 3: Probabilistic Learning
$\left.\begin{array}{|r|r|}\hline \text { Giampiero Salvi } & \text { Lecture 3: Probabilistic Learning } \\ \hline \text { Probability Theory Basics } \\ \text { Bayesian Inference and Learning } \\ \text { Common Distributions }\end{array}\right)$
$P(A \mid B) \neq P(A \cap B)$

Giampiero Salvi Lecture 3: Probabilistic Learning

Giampiero Salvi	Lecture 3: Probabilistic Learning
Probability Theory Basics Bayesian Inference and Learning Common Distributions	
Conditional Probabilities	

$$
P(A \mid B) \neq P(A \cap B)
$$

Giampiero Salvi Lecture 3: Probabilistic Learning

Probability Theory Basics
 Bayesian Inference and Learning Common Distributions

Conditional Probability (Random Variables)

- The conditional probability of x given that y takes value y^{*} indicates the different values of r.v. x which we'll observe given that y is fixed to value y^{*}.
- The conditional probability can be recovered from the joint distribution $P(x, y)$:

$$
P\left(x \mid y=y^{*}\right)=\frac{P\left(x, y=y^{*}\right)}{P\left(y=y^{*}\right)}=\frac{P\left(x, y=y^{*}\right)}{\int_{x} P\left(x, y=y^{*}\right) d x}
$$

- Extract an appropriate slice, and then normalize it.

if

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

then

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

and

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$$
P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}=\frac{P(x \mid y) P(y)}{\sum_{y} P(x \mid y) P(y)}
$$

Each term in Bayes' rule has a name:

- $P(y \mid x) \leftarrow$ Posterior (what we know about y given x.)
- $P(y) \leftarrow$ Prior (what we know about y before we consider x.)
- $P(x \mid y) \leftarrow$ Likelihood (propensity for observing a certain value of x given a certain value of y)
- $P(x) \leftarrow$ Evidence (a constant to ensure that the I.h.s. is a valid distribution)

- Bayesian Inference: The process of calculating the posterior probability distribution $P(y \mid \mathbf{x})$ for certain data \mathbf{x}.
- Bayesian Learning: The process of learning the likelihood distribution $P(\mathbf{x} \mid y)$ and prior probability distribution $P(y)$ from a set of training points

$$
\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}
$$

In many of our applications y is a discrete variable and \mathbf{x} is a multi-dimensional data vector extracted from the world.

$$
P(y \mid \mathbf{x})=\frac{P(\mathbf{x} \mid y) P(y)}{P(\mathbf{x})}
$$

Then

- $P(\mathbf{x} \mid y) \leftarrow$ Likelihood represents the probability of observing data \mathbf{x} given the hypothesis y.
- $P(y) \leftarrow$ Prior of y represents the background knowledge of hypothesis y being correct.
- $P(y \mid \mathbf{x}) \leftarrow$ Posterior represents the probability that hypothesis y is true after data \mathbf{x} has been observed.

Task: Determine the gender of a person given their measured hair length.
Notation:

- Let $g \in\{$ ' f ', 'm'\} be a r.v. denoting the gender of a person.
- Let x be the measured length of the hair.

Information given:

- The hair length observation was made at a boy's school thus

$$
P(g=' m ')=.95, \quad P\left(g=\prime^{\prime}\right)=.05
$$

- Knowledge of the likelihood distributions $P(x \mid g=$ ' f ') and $P(x \mid g=$ 'm')

Selecting the most probably hypothesis

Task: Determine the gender of a person given their measured hair length \Longrightarrow calculate $P(g \mid x)$.

Solution:

Apply Bayes' Rule to get

$$
\begin{aligned}
P\left(g=\mathrm{m}^{\prime} \mid x\right) & =\frac{P\left(x \mid g=\mathrm{m}^{\prime}\right) P(g=\text { 'm' })}{P(x)} \\
& =\frac{P(x \mid g=\text { 'm' }) P(g=\text { 'm' })}{P\left(x \mid g=\text { ' }^{\prime}\right) P(g=\text { 'f' })+P(x \mid g=\text { 'm' }) P(g=\text { 'm' })}
\end{aligned}
$$

Can calculate $P\left(g=\right.$ ' $\left.\mathrm{f}^{\prime} \mid x\right)=1-P(g=$ 'm' $\mid x)$

Scenario:

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.8% of the entire population have cancer.

Scenario in probabilities:

- Priors:

$$
P(\text { disease })=.008 \quad P(\text { not disease })=.992
$$

- Likelihoods:

$$
\begin{array}{ll}
P(+\mid \text { disease })=.98 & P(+\mid \text { not disease })=.03 \\
P(-\mid \text { disease })=.02 & P(-\mid \text { not disease })=.97
\end{array}
$$

- Maximum A Posteriori (MAP) Estimate:

Hypothesis with highest probability given observed data

$$
\begin{aligned}
y_{\mathrm{MAP}} & =\arg \max _{y \in \mathcal{Y}} P(y \mid \mathbf{x}) \\
& =\arg \max _{y \in \mathcal{Y}} \frac{P(\mathbf{x} \mid y) P(y)}{P(\mathbf{x})} \\
& =\arg \max _{y \in \mathcal{Y}} P(\mathbf{x} \mid y) P(y)
\end{aligned}
$$

- Maximum Likelihood Estimate (MLE):

Hypothesis with highest likelihood of generating observed data.

$$
y_{\mathrm{MLE}}=\arg \max _{y \in \mathcal{Y}} P(\mathbf{x} \mid y)
$$

Useful if we do not know prior distribution or if it is uniform.

Find MAP estimate:
When test returned a positive result,

$$
\begin{aligned}
y_{\mathrm{MAP}} & =\arg \max _{y \in\{\text { disease, not disease }\}} P(y \mid+) \\
& =\arg \underset{y \in\{\text { disease, not disease }\}}{\max } P(+\mid y) P(y)
\end{aligned}
$$

Substituting in the correct values get

$$
P(+\mid \text { disease }) P(\text { disease })=.98 \times .008=.0078
$$

$$
P(+\mid \text { not disease }) P(\text { not disease })=.03 \times .992=.0298
$$

Therefore $y_{M A P}="$ not disease" .

The Posterior probabilities:

$$
\begin{aligned}
P(\text { disease } \mid+) & =\frac{.0078}{(.0078+.0298)}=.21 \\
P(\text { not disease } \mid+) & =\frac{.0298}{(.0078+.0298)}=.79
\end{aligned}
$$

- Domain: binary variables $(x \in\{0,1\})$
- Parameters: $\lambda=\operatorname{Pr}(x=1), \lambda \in[0,1]$

Then $\operatorname{Pr}(x=0)=1-\lambda$, and

$$
\operatorname{Pr}(x)=\lambda^{x}(1-\lambda)^{1-x}= \begin{cases}\lambda, & \text { if } x=1, \\ 1-\lambda, & \text { if } x=0\end{cases}
$$

Giampiero Salvi Lecture 3: Probabilistic Learning

$$
\begin{aligned}
& \text { Probability Theory Basics } \\
& \text { Bayesian Inference and Learning } \\
& \text { Common Distributions }
\end{aligned}
$$

Beta and Dirichlet

Beta

- Domain: real numbers, bounded $(\lambda \in[0,1])$
- Parameters: $\alpha, \beta \in \mathbb{R}_{+}$
- describes probability of parameter λ in Bernoulli

Dirichlet

- Domain: K real numbers, bounded $\left(\lambda_{1}, \ldots, \lambda_{K} \in[0,1]\right)$
- Parameters: $\alpha_{1}, \ldots, \alpha_{K} \in \mathbb{R}_{+}$
- describes probability of parameters λ_{k} in Categorical

- Domain: discrete variables $\left(x \in\left\{x_{1}, \ldots, x_{K}\right\}\right)$
- Parameters: $\lambda=\left[\lambda_{1}, \ldots, \lambda_{K}\right]$
- with $\lambda_{k} \in[0,1]$ and $\sum_{k=1}^{K} \lambda_{k}=1$

- aka univariate normal distribution
- Domain: real numbers $(x \in \mathbb{R})$

$$
f\left(x \mid \mu, \sigma^{2}\right)=N\left(\mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

- aka univariate normal distribution
- Domain: real numbers $(x \in \mathbb{R})$

$$
f\left(x \mid \mu, \sigma^{2}\right)=N\left(\mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

- aka multivariate normal distribution
- Domain: real numbers $\left(\mathbf{x} \in \mathbb{R}^{D}\right)$

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
x_{D}
\end{array}\right] \quad \mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\cdots \\
\mu_{D}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \ldots & \sigma_{1 D} \\
\sigma_{21} & \cdots & & \\
\ldots & & & \\
\sigma_{D 1} & \cdots & & \sigma_{D D}
\end{array}\right] \\
f(\mathbf{x} \mid \mu, \Sigma)=\frac{\exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right]}{(2 \pi)^{\frac{D}{2}}|\Sigma|^{\frac{1}{2}}}
\end{gathered}
$$

Eigenvalue decomposition of the covariance matrix:

$$
\Sigma=\lambda R \Sigma_{\mathrm{diag}} R^{T}
$$

$\times 1$
$\times 1$
$\times 1$

