Problem set for Seminar 2

See www.kth.se/social/course/SF1625 for information about how the seminars work and what you are expected to do during the seminars. At this seminar there will be a small test in which you are asked to solve (a variant of) one of the recommended exercises from the text book Calculus by Adams och Essex (8:th ed), namely:
Chapter 1.2: $9,13,21,25,30,49,50,78,79$. Chapter 1.3: 3, 6, 11, 13, 53. Chapter 1.4: $7,8,12,15,17,20,21,29$. Chapter 1.5: 13, 29. Chapter 2.1: 5, 7. Chapter 2.2: 1, 3, 11, 26, 27, 40, 41, 42, 43, 44, 45, 47. Chapter 2.3: 1, 7, 11, 17, 25, 33, 35, 47. Chapter 2.4: $3,5,11,18,23,30,31,37$. Chapter 2.5: 13, 15, 23, 29, 31, 35, 45, 62.
At the seminar these problems will be discussed.

PROBLEMS

Uppgift 1. Compute the limits:
A. $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
B. $\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+5}{5 x^{2}+2 x+3}$
C. $\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x})$

Uppgift 2. Find the constant k such that the function

$$
g(x)= \begin{cases}\frac{\sin k x}{x}, & x \neq 0 \\ 4, & x=0\end{cases}
$$

is continuous at the origin. Is the function then continuous at all x ?

Uppgift 3. Differentiate the following functions with respect to x and state for what x these functions are differentiable. Does any of these functions fail to be differentiable in all of the domain of definition?
A. $f(x)=1+\tan ^{2} x$
B. $g(x)=\frac{a x+b}{c x+d}$
C. $h(x)=\sin \sqrt{x}$
D. $k(x)=|x| \cos x$

DISCUSION PROBLEMS

Here are some extra problems to discuss at the seminar.

- Show using the intermediate value property that $p(x)=x^{5}+x^{3}+1$ has a zero somewhere between -1 and 0 . Is the zero closer to -1 or 0 ? How can you be sure that there are not any other zeros?
- At a car park you are charged as follows: the first hour costs 4 kronor and after that the charge is 2 kronor for each started hour up to the maximal charge 10 kronor. Let $h(t)$ be the cost as a function of time t hours. Sketch the graph $y=h(t)$ for $0 \leq t \leq 24$. Is h continuous?
- Give an example of function with domain of definition \mathbb{R} that is neither continuous nor differentiable at $x=1$.
- Give an example of function with domain of definition \mathbb{R} that is continuous but not differentiable at $x=1$.
- Does there exist a function that is differentiable but not continuous at $x=1$.

