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Classification with Probability Distributions

Classification

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

x1

x2

x ← features

y ∈ {ω1, . . . ,ωK} ← class

k̂ = argmax
k

P(ωk)P(x|ωk)
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Estimation Theory

in the last lecture we assumed we knew:

P(y) ← Prior

P(x | y) ← Likelihood

P(x) ← Evidence

and we used them to compute the Posterior P(y | x)

How can we obtain this information from
observations (data)?

Estimation Theory ≡ Learning
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Assumption # 1: Class Independence
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Assumptions:

samples from class i do not influence estimate for class
j , i �= j

Generative vs discriminative models
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Parameter estimation (cont.)

class independence assumption:
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each distribution is a likelihood in the form P(x|θi ) for class i
in the following we drop the class index and talk about P(x|θ)
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Assumption #2: i.i.d.

Samples from each class are independent and identically
distributed:

D = {x1, . . . , xN}
The likelihood of the whole data set can be factorized:

P(D|θ) = P(x1, . . . , xN |θ) =
N�

i=1

P(xi |θ)

And the log-likelihood becomes:

logP(D|θ) =
N�

i=1

logP(xi |θ)
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Parametric vs Non-Parametric Estimation

Parametric Non Parametric

We only consider parametric methods today
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Maximum likelihood estimation: Illustration

Find parameter vector θ̂ that maximizes P(D|θ) with
D = {x1, . . . , xn}

X
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Maximum likelihood estimation: Illustration

Find parameter vector θ̂ that maximizes P(D|θ) with
D = {x1, . . . , xn}
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1 estimate the optimal parameters of the model

Giampiero Salvi Lecture 4: Probabilistic Learning

Fitting Probability Models
Unsupervised Learning

Model Selection and Occam’s Razor

Maximum Likelihood Methods
Maximum A Posteriori Methods
Bayesian methods

Maximum likelihood estimation: Illustration

Find parameter vector θ̂ that maximizes P(D|θ) with
D = {x1, . . . , xn}

X

p(
D
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1 estimate the optimal parameters of the model
2 evaluate the predictive distribution on new data points
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ML estimation of Gaussian mean

N(x |µ,σ2) =
1√
2πσ

exp

�
−(x − µ)2

2σ2

�
, with θ = {µ,σ2}

Log-likelihood of data (i.i.d. samples):

logP(D|θ) =
N�

i=1

logN(xi |µ,σ2) = −N log
�√

2πσ
�
−

N�

i=1

(xi − µ)2

2σ2

0 =
d logP(D|θ)

dµ
=

N�

i=1

(xi − µ)

σ2
=

�N
i=1 xi − Nµ

σ2
⇐⇒

µ̂ =
1

N

N�

i=1

xi
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ML estimation of Gaussian parameters

µ̂ =
1

N

N�

i=1

xi

σ̂2 =
1

N

N�

i=1

(xi − µ̂)2

same result by minimizing the sum of square errors!

but we make assumptions explicit
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Problem: few data points

10 repetitions with 5 points each

X

●● ● ●●
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Problem: few data points

10 repetitions with 5 points each

X
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Maximum a Posteriori Estimation

µ̂, σ̂2 = argmax
µ,σ2

�
N�

i=1

P(xi |µ,σ2)P(µ,σ2)

�

where the prior P(µ,σ2) needs a nice mathematical form for closed
solution

µ̂MAP =
N

N + γ
µ̂ML +

γ

N + γ
δ

σ̂2
MAP =

N

N + 3 + 2α
σ̂2

ML +
2β + γ(δ + µ̂MAP)

2

N + 3 + 2α

where α,β, γ, δ are parameters of the prior distribution
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ML, MAP and Point Estimates

Both ML and MAP produce point estimates of θ

Assumption: there is a true value for θ

advantage: once θ̂ is found, everything is known
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Bayesian estimation

Consider θ as a random variable

characterize θ with the posterior distribution P(θ|D) given the
data

ML: D → θ̂ML

MAP: D,P(θ) → θ̂MAP

Bayes: D,P(θ) → P(θ|D)

for new data points, instead of P(xnew|θ̂ML) or P(xnew|θ̂MAP),
compute:

P(xnew|D) =

�

θ∈Θ
P(xnew|θ)P(θ|D)dθ
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Bayesian estimation (cont.)

we can compute P(x|D) instead of P(x|θ̂)
integrate the joint density P(x, θ|D) = P(x|θ)P(θ|D)

P(x|θ̂)
X
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Bayesian estimation

we can compute P(x|D) instead of P(x|θ̂)
integrate the joint density P(x, θ|D) = P(x|θ)P(θ|D)

P(x|D) =�
P(x|θ)P(θ|D)dθ
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we can compute P(x|D) instead of P(x|θ̂)
integrate the joint density P(x, θ|D) = P(x|θ)P(θ|D)
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Bayesian estimation

we can compute P(x|D) instead of P(x|θ̂)
integrate the joint density P(x, θ|D) = P(x|θ)P(θ|D)
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Bayesian estimation (cont.)

Pros:

better use of the data

makes a priori assumptions explicit

can be implemented recursively (if conjugate prior)

use posterior P(θ|D) as new prior

reduce overfitting

Cons:

definition of noninformative priors can be tricky

often requires numerical integration

not widely accepted by traditional statistics (frequentism)
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Clustering vs Classification

Classification

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

x1

x2

Clustering
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Fitting complex distributions

We can try to fit a mixture of K distributions:

P(x|θ) =
K�

k=1

πkP(x |θk),

with θ = {π1, . . . ,πk , θ1, . . . , θK}

Problem:

We do not know which point has been generated by which
component of the mixture

We cannot optimize P(x|θ) directly
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Expectation Maximization

Fitting model parameters with missing (latent) variables

P(x|θ) =
K�

k=1

πkP(x |θk),

with θ = {π1, . . . ,πk , θ1, . . . , θK}

very general idea (applies to many different probabilistic
models)

augment the data with the missing variables: hik probability
that each data point xi was generated by each component of
the mixture k

optimize the Likelihood of the complete data:

P(x,h|θ)
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Heuristic Example: K-means

describes each class with a centroid

a point belongs to a class if the corresponding centroid is
closest (Euclidean distance)

iterative procedure

guaranteed to converge

not guaranteed to find the optimal solution

used in vector quantization (since the 1950’s)
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K-means: algorithm

Data: k (number of desired clusters), n data points xi
Result: k clusters
initialization: assign initial value to k centroids ci ;
repeat

assign each point xi to closest centroid cj ;
compute new centroids as mean of each group of points;

until centroids do not change;
return k clusters;
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K-means: example

iteration 20, update clusters
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K-means: sensitivity to initial conditions

iteration 20, update clusters
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K-means: limits of Euclidean distance

the Euclidean distance is isotropic (same in all directions in
Rp)

this favours spherical clusters

the size of the clusters is controlled by their distance
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K-means: non-spherical classes

two non−spherical classes
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Expectation Maximization

Fitting model parameters with missing (latent) variables

P(x|θ) =
K�

k=1

πkP(x |θk),

with θ = {π1, . . . ,πk , θ1, . . . , θK}

very general idea (applies to many different probabilistic
models)

augment the data with the missing variables: hik probability
of assignment of each data point xi to each component of the
mixture k

optimize the Likelihood of the complete data:

P(x,h|θ)
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Mixture of Gaussians

This distribution is a weight sum of K Gaussian distributions

P(x) =
K�

k=1

πk N (x ;µk ,σ
2
k)

where π1 + · · ·+ πK = 1
and πk > 0 (k = 1, . . . ,K ).

This model can describe complex multi-modal probability distributions

by combining simpler distributions.
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Mixture of Gaussians

P(x) =
K�

k=1

πk N (x ;µk ,σ
2
k)

Learning the parameters of this model from training data
x1, . . . , xn is not trivial - using the usual straightforward maximum

likelihood approach.

Instead learn parameters using the
Expectation-Maximization (EM) algorithm.
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Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the introduction
of a discrete hidden/latent variable h and P(x , h):

P(x) =
K�

k=1

P(x , h = k) =
K�

k=1

P(x | h = k)P(h = k)

=
K�

k=1

πk N (x ;µk ,σ
2
k)

← mixture density

Figures taken from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians

Assume: We know the pdf of x has this form:

P(x) = π1N (x ;µ1,σ
2
1) + π2N (x ;µ2,σ

2
2)

where π1 + π2 = 1 and πk > 0 for components k = 1, 2.

Unknown: Values of the parameters (Many!)

Θ = (π1, µ1,σ1, µ2,σ2).

Have: Observed n samples x1, . . . , xn drawn from P(x).

Want to: Estimate Θ from x1, . . . , xn.

How would it be possible to get them all???
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EM for two Gaussians

For each sample xi introduce a hidden variable hi

hi =

�
1 if sample xi was drawn from N (x ;µ1,σ

2
1)

2 if sample xi was drawn from N (x ;µ2,σ
2
2)

and come up with initial values

Θ(0) = (π
(0)
1 , µ

(0)
1 ,σ

(0)
1 , µ

(0)
2 ,σ

(0)
2 )

for each of the parameters.

EM is an iterative algorithm which updates Θ(t) using the
following two steps...
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EM for two Gaussians: E-step

The responsibility of k-th Gaussian for each sample x (indicated by
the size of the projected data point)

�

�

Look at each sample x along hidden variable h in the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: E-step (cont.)

E-step: Compute the “posterior probability” that xi was generated
by component k given the current estimate of the parameters Θ(t).
(responsibilities)

for i = 1, . . . n

for k = 1, 2

γ
(t)
ik = P(hi = k | xi ,Θ(t))

=
π
(t)
k N (xi ;µ

(t)
k ,σ

(t)
k )

π
(t)
1 N (xi ;µ

(t)
1 ,σ

(t)
1 ) + π

(t)
2 N (xi ;µ

(t)
2 ,σ

(t)
2 )

Note: γ
(t)
i1 + γ

(t)
i2 = 1 and π1 + π2 = 1
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EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constinuetnt.
Sample xi contributes according to the responsibility γik .

(dashed and solid lines for fit before and after update)

Look along samples x for each h in the M-step

Figure from Computer Vision: models, learning and inference by Simon Prince.
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EM for two Gaussians: M-step (cont.)

M-step: Compute the Maximum Likelihood of the parameters of
the mixture model given out data’s membership distribution, the

γ
(t)
i ’s:

for k = 1, 2

µ
(t+1)
k =

�n
i=1 γ

(t)
ik xi�n

i=1 γ
(t)
ik

,

σ
(t+1)
k =

����
�n

i=1 γ
(t)
ik (xi − µ

(t+1)
k )2

�n
i=1 γ

(t)
ik

,

π
(t+1)
k =

�n
i=1 γ

(t)
ik

n
.
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EM in practice
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Fitting Probability Models
Unsupervised Learning

Model Selection and Occam’s Razor

Classification vs Clustering
Heuristic Example: K-means
Expectation Maximization

EM properties

Similar to K-means

guaranteed to find a local maximum of the complete data
likelihood

somewhat sensitive to initial conditions

Better than K-means

Gaussian distributions can model clusters with different shapes

all data points are smoothly used to update all parameters
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Model Selection and Overfitting

X

● ● ●
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Overfitting

f
(x
)

x

f
(x
)

x
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Overfitting: Phoneme Discrimination
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Occam’s Razor

Choose the simplest explanation for the observed data

Important factors:

number of model parameters

number of data points

model fit to the data
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Overfitting and Maximum Likelihood

we can make the likelihood arbitrary large by
increasing the number of parameters

X

● ● ●
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Occam’s Razor and Bayesian Learning

Remember that:

P(xnew|D) =

�

θ∈Θ
P(xnew|θ)P(θ|D)dθ

Intuition:

More complex models fit the data very well (large P(D|θ)) but
only for small regions of the parameter space Θ.
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Summary

1 Fitting Probability Models
Maximum Likelihood Methods
Maximum A Posteriori Methods
Bayesian methods

2 Unsupervised Learning
Classification vs Clustering
Heuristic Example: K-means
Expectation Maximization

3 Model Selection and Occam’s Razor

If you are interested in learning more take a look at:

C. M. Bishop, Pattern Recognition and Machine Learning, Springer Verlag

2006.
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