Lecture 4: Probabilistic Learning DD2431

Giampiero Salvi

Autumn, 2014

1 Fitting Probability Models

- Maximum Likelihood Methods
- Maximum A Posteriori Methods
- Bayesian methods

2 Unsupervised Learning

- Classification vs Clustering
- Heuristic Example: K-means
- Expectation Maximization

3 Model Selection and Occam's Razor

Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods	Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods
Classification with Probabilit	y Distributions	Estimation Theory	
Classification		in the last lecture we assumed we	e knew:
♦		• $P(y) \leftarrow Prior$	
		• $P(x y) \leftarrow Likelihood$	
		• $P(x) \leftarrow Evidence$	
	$\mathbf{x} \leftarrow features$ $y \in \{\omega_1, \dots, \omega_K\} \leftarrow class$	and we used them to compute th	e <i>Posterior</i> $P(y x)$
eeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	$\hat{k} = rg\max_k P(\omega_k) P(\mathbf{x} \omega_k)$		this information from ons (data)?
			eory \equiv Learning

x1

Maximum Likelihood Methods Maximum A Posteriori Methods Bavesian methods Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Assumption # 1: Class Independence

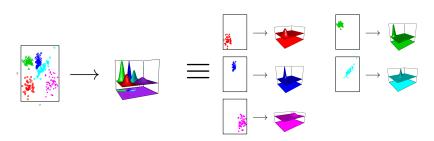
Parameter estimation (cont.)

 $\overline{ \left(\begin{array}{c} \\ \\ \\ \end{array} \right)}^{*} \longrightarrow \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)^{*} \end{array}$

Assumptions:

- samples from class i do not influence estimate for class $j, i \neq j$
- Generative vs discriminative models

• class independence assumption:



- each distribution is a likelihood in the form $P(\mathbf{x}|\theta_i)$ for class *i*
- in the following we drop the class index and talk about $P(\mathbf{x}|\theta)$

Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods		Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods
Assumption $#2$: i.i.d.		Parametric vs Non-Parametr	ic Estimation

Samples from each class are independent and identically distributed:

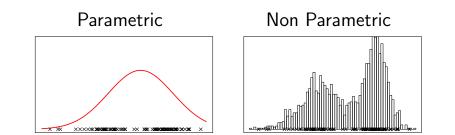
$$\mathcal{D} = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$$

The likelihood of the whole data set can be factorized:

$$P(\mathcal{D}|\theta) = P(\mathbf{x}_1, \dots, \mathbf{x}_N|\theta) = \prod_{i=1}^N P(\mathbf{x}_i|\theta)$$

And the log-likelihood becomes:

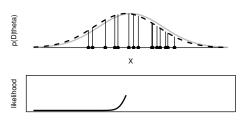
$$\log P(\mathcal{D}| heta) = \sum_{i=1}^N \log P(\mathbf{x}_i| heta)$$



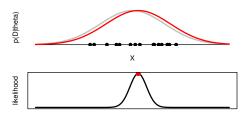
We only consider parametric methods today

Maximum likelihood estimation: Illustration

Find parameter vector $\hat{\theta}$ that maximizes $P(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$



Find parameter vector $\hat{\theta}$ that maximizes $P(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$



estimate the optimal parameters of the model

ero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi Lecture 4: Probabilistic Learning
y Models Learning 1's Razor	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods	Fitting Probability Models Maximum Likelihood Methods Unsupervised Learning Maximum A Posteriori Methods Model Selection and Occam's Razor Bayesian methods

ML estimation of Gaussian mean

$$N(x|\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma}} \exp\left[-rac{(x-\mu)^2}{2\sigma^2}
ight], ext{ with } heta = \{\mu,\sigma^2\}$$

Log-likelihood of data (i.i.d. samples):

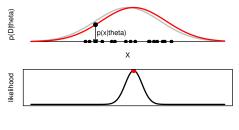
$$\log P(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log N(x_i|\mu, \sigma^2) = -N \log \left(\sqrt{2\pi\sigma}\right) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$0 = \frac{d \log P(\mathcal{D}|\theta)}{d\mu} = \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = \frac{\sum_{i=1}^{N} x_i - N\mu}{\sigma^2} \iff$$
$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Giampie Fitting Probability Unsupervised Model Selection and Occarr

Maximum likelihood estimation: Illustration

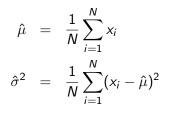
Find parameter vector
$$\hat{\theta}$$
 that maximizes $P(\mathcal{D}|\theta)$ with $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$



estimate the optimal parameters of the model evaluate the predictive distribution on new data points Maximum Likelihood Methods Maximum A Posteriori Methods Bavesian methods

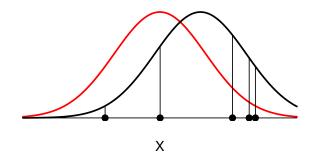
ML estimation of Gaussian parameters

10 repetitions with 5 points each



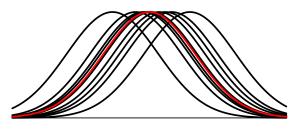
• same result by minimizing the sum of square errors!

• but we make assumptions explicit



Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods	Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods
Problem: few data points		Maximum a Posteriori Estim	ation

10 repetitions with 5 points each



 $\hat{\mu}, \hat{\sigma}^2 = \arg \max_{\mu, \sigma^2} \left[\prod_{i=1}^{N} P(x_i | \mu, \sigma^2) P(\mu, \sigma^2) \right]$

where the prior $P(\mu, \sigma^2)$ needs a nice mathematical form for closed solution

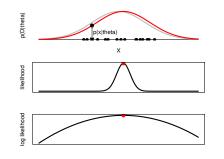
$$\hat{\mu}_{MAP} = \frac{N}{N+\gamma} \hat{\mu}_{ML} + \frac{\gamma}{N+\gamma} \delta$$
$$\hat{\sigma}_{MAP}^{2} = \frac{N}{N+3+2\alpha} \hat{\sigma}_{ML}^{2} + \frac{2\beta+\gamma(\delta+\hat{\mu}_{MAP})^{2}}{N+3+2\alpha}$$

where $\alpha,\beta,\gamma,\delta$ are parameters of the prior distribution

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

ML, MAP and Point Estimates

- $\bullet\,$ Both ML and MAP produce point estimates of θ
- \bullet Assumption: there is a true value for θ
- advantage: once $\hat{\theta}$ is found, everything is known



Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor

Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods

Bayesian estimation

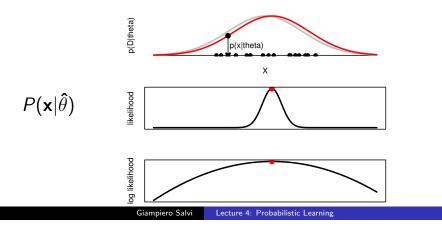
- Consider θ as a random variable
- characterize θ with the posterior distribution $P(\theta|D)$ given the data

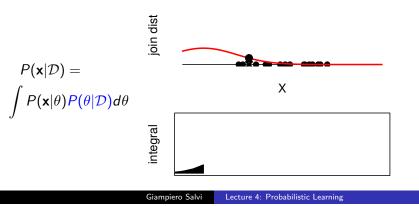
ML:	${\mathcal D}$	\rightarrow	$\hat{ heta}_{ML}$
MAP:	$\mathcal{D}, \boldsymbol{P(\theta)}$	\rightarrow	$\hat{ heta}_{MAP}$
Bayes:	$\mathcal{D}, \boldsymbol{P(\theta)}$	\rightarrow	$P(\theta D)$

• for new data points, instead of $P(\mathbf{x}_{new}|\hat{\theta}_{ML})$ or $P(\mathbf{x}_{new}|\hat{\theta}_{MAP})$, compute:

$$P(\mathbf{x}_{\scriptscriptstyle \mathsf{new}} | \mathcal{D}) = \int_{ heta \in \Theta} P(\mathbf{x}_{\scriptscriptstyle \mathsf{new}} | heta) P(heta | \mathcal{D}) d heta$$

Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods	Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods
Bayesian estimation (cont.)		Bayesian estimation	
 we can compute P(x D) instead of P(x θ̂) integrate the joint density P(x, θ D) = P(x θ)P(θ D) 		 we can compute P(x D) inst integrate the joint density P 	



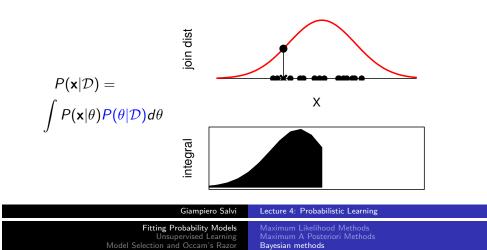


Fitting Probability Models Unsupervised Learning Model Selection and <u>Occam's Razor</u>

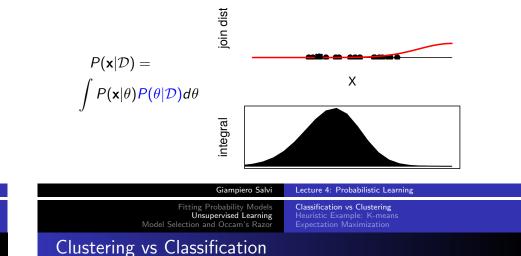
Maximum Likelihood Methods Maximum A Posteriori Methods Bavesian methods

Bayesian estimation

- we can compute $P(\mathbf{x}|\mathcal{D})$ instead of $P(\mathbf{x}|\hat{\theta})$
- integrate the joint density $P(\mathbf{x}, \theta | \mathcal{D}) = P(\mathbf{x} | \theta) P(\theta | \mathcal{D})$



- we can compute $P(\mathbf{x}|\mathcal{D})$ instead of $P(\mathbf{x}|\hat{\theta})$
- integrate the joint density $P(\mathbf{x}, \theta | \mathcal{D}) = P(\mathbf{x} | \theta) P(\theta | \mathcal{D})$



Pros:

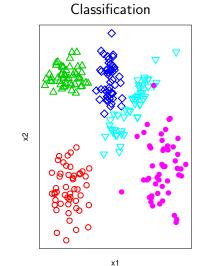
• better use of the data

Bayesian estimation (cont.)

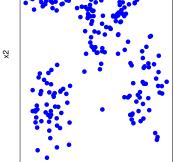
- makes a priori assumptions explicit
- can be implemented recursively (if conjugate prior)
 - use posterior $P(\theta|\mathcal{D})$ as new prior
- reduce overfitting

Cons:

- definition of noninformative priors can be tricky
- often requires numerical integration
- not widely accepted by traditional statistics (frequentism)



Clustering



x1

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Fitting complex distributions

We can try to fit a mixture of K distributions:

$$P(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k P(x|\theta_k),$$

with $\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$

Problem:

We do not know which point has been generated by which component of the mixture

We cannot optimize $P(\mathbf{x}|\theta)$ directly

Expectation Maximization

Fitting model parameters with missing (latent) variables

$$P(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k P(x|\theta_k),$$

with $\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$

- very general idea (applies to many different probabilistic models)
- augment the data with the missing variables: h_{ik} probability that each data point x_i was generated by each component of the mixture k
- optimize the Likelihood of the complete data:

$P(\mathbf{x}, \mathbf{h}|\theta)$

Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Classification vs Clustering Heuristic Example: K-means Expectation Maximization		Classification vs Clustering Heuristic Example: K-means Expectation Maximization
Heuristic Example: K-means		K-means: algorithm	

- describes each class with a centroid
- a point belongs to a class if the corresponding centroid is closest (Euclidean distance)
- iterative procedure
- guaranteed to converge
- not guaranteed to find the optimal solution
- used in vector quantization (since the 1950's)

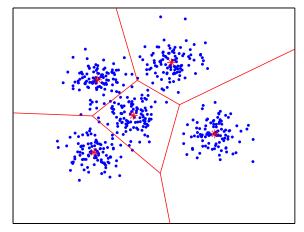
Data: k (number of desired clusters), n data points \mathbf{x}_i **Result**: k clusters initialization: assign initial value to k centroids \mathbf{c}_i ; **repeat** assign each point \mathbf{x}_i to closest centroid \mathbf{c}_j ; compute new centroids as mean of each group of points; **until** *centroids do not change*;

return k clusters;

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

K-means: example

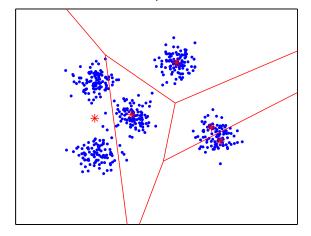
iteration 20, update clusters



Unsupervised Learning Model Selection and Occam's Razor K-means: sensitivity to initial conditions

Fitting Proba

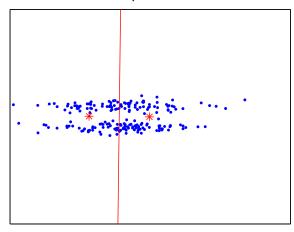
iteration 20, update clusters



Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Classification vs Clustering Heuristic Example: K-means Expectation Maximization	Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Heuristic Example: K-means
K-means: limits of Euclidean distance		K-means: non-spherical class	ies

two non-spherical classes

- the Euclidean distance is isotropic (same in all directions in \mathbb{R}^p)
- this favours spherical clusters
- the size of the clusters is controlled by their distance



Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor Classification vs Clustering Heuristic Example: K-means Expectation Maximization

Expectation Maximization

Fitting model parameters with missing (latent) variables

$$P(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k P(x|\theta_k),$$

with $\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\}$

- very general idea (applies to many different probabilistic models)
- augment the data with the missing variables: h_{ik} probability of assignment of each data point x_i to each component of the mixture k
- optimize the Likelihood of the complete data:

$P(\mathbf{x}, \mathbf{h}|\theta)$

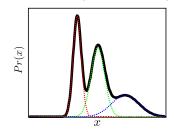
This distribution is a weight sum of K Gaussian distributions

Unsupervised Learning Model Selection and Occam's Razor

$$P(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \sigma_k^2)$$
where $\pi_1 + \dots + \pi_K - 1$

Expectation Maximization

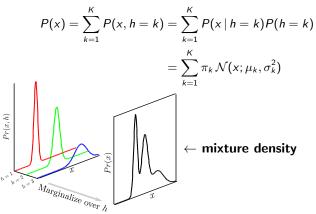
and
$$\pi_k > 0$$
 ($k = 1, ..., K$).



This model can describe **complex multi-modal** probability distributions by combining simpler distributions.

Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
	Classification vs Clustering Heuristic Example: K-means Expectation Maximization		Classification vs Clustering Heuristic Example: K-means Expectation Maximization
Mixture of Gaussians		Mixture of Gaussians as a m	arginalization

We can interpret the Mixture of Gaussians model with the introduction of a discrete hidden/latent variable h and P(x, h):



Figures taken from Computer Vision: models, learning and inference by Simon Prince.

 $P(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \sigma_k^2)$

- Learning the parameters of this model from training data x_1, \ldots, x_n is not trivial using the usual straightforward maximum likelihood approach.
- Instead learn parameters using the **Expectation-Maximization** (EM) algorithm.

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM for two Gaussians

Assume: We know the pdf of *x* has this form:

$$P(x) = \pi_1 \mathcal{N}(x; \mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(x; \mu_2, \sigma_2^2)$$

where $\pi_1 + \pi_2 = 1$ and $\pi_k > 0$ for components k = 1, 2.

Unknown: Values of the parameters (Many!)

$$\Theta = (\pi_1, \mu_1, \sigma_1, \mu_2, \sigma_2).$$

Have: Observed *n* samples x_1, \ldots, x_n drawn from P(x).

Want to: Estimate Θ from x_1, \ldots, x_n .

Model Selection an

EM for two Gaussian

How would it be possible to get them all???

Classification vs Clustering Heuristic Example: K-means Expectation Maximization

EM for two Gaussians

For each sample x_i introduce a *hidden variable* h_i

 $h_i = \begin{cases} 1 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x; \mu_1, \sigma_1^2) \\ 2 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x; \mu_2, \sigma_2^2) \end{cases}$

and come up with initial values

$$\Theta^{(0)} = (\pi_1^{(0)}, \mu_1^{(0)}, \sigma_1^{(0)}, \mu_2^{(0)}, \sigma_2^{(0)})$$

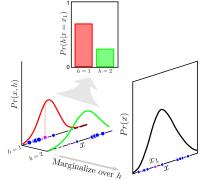
for each of the parameters.

EM is an *iterative algorithm* which updates $\Theta^{(t)}$ using the following two steps...

Giampiero Salvi	Lecture 4: Probabilistic Learning	Giampiero Salvi	Lecture 4: Probabilistic Learning
obability Models pervised Learning d Occam's Razor	Classification vs Clustering Heuristic Example: K-means Expectation Maximization	Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Classification vs Clustering Heuristic Example: K-means Expectation Maximization
ns: E-ste	D	EM for two Gaussians: E-ste	p (cont.)

(responsibilities)

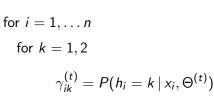
The responsibility of k-th Gaussian for each sample x (indicated by the size of the projected data point) **E-step:** Compute the "posterior probability" that x_i was generated by component k given the current estimate of the parameters $\Theta^{(t)}$.



Look at each sample x along hidden variable h in the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.

Giampiero Salvi Lecture 4: Probabilistic Learning



$$=\frac{\pi_{k}^{(t)}\mathcal{N}(x_{i};\mu_{k}^{(t)},\sigma_{k}^{(t)})}{\pi_{1}^{(t)}\mathcal{N}(x_{i};\mu_{1}^{(t)},\sigma_{1}^{(t)})+\pi_{2}^{(t)}\mathcal{N}(x_{i};\mu_{2}^{(t)},\sigma_{2}^{(t)})}$$

Note: $\gamma_{i1}^{(t)} + \gamma_{i2}^{(t)} = 1$ and $\pi_1 + \pi_2 = 1$

 $\mu_{k}^{(t+1)} = \frac{\sum_{i=1}^{n} \gamma_{ik}^{(t)} x_{i}}{\sum_{i=1}^{n} \gamma_{ik}^{(t)}},$

 $\pi_k^{(t+1)} = \frac{\sum_{i=1}^n \gamma_{ik}^{(t)}}{n}.$

M-step: Compute the Maximum Likelihood of the parameters of

the mixture model given out data's membership distribution, the

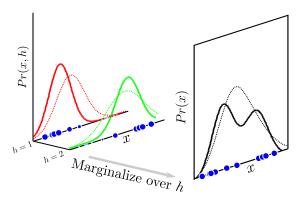
 $\sigma_k^{(t+1)} = \sqrt{\frac{\sum_{i=1}^n \gamma_{ik}^{(t)} (x_i - \mu_k^{(t+1)})^2}{\sum_{i=1}^n \gamma_{ik}^{(t)}}},$

EM for two Gaussians: M-step (cont.)

EM for two Gaussians: M-step

Fitting Probabili Unsupervised Learning Model Selection and Occam's Razor

Fitting the Gaussian model for each of *k*-th constinuetnt. Sample x_i contributes according to the responsibility γ_{ik} .



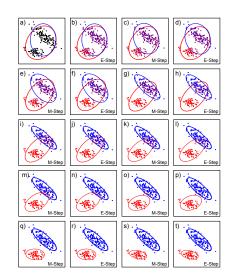
Expectation Maximization

(dashed and solid lines for fit before and after update)

Look along samples x for each h in the M-step

Giampiero Salvi		Giampiero Salvi	Lecture 4: Probabilistic Learning
	Classification vs Clustering Heuristic Example: K-means	Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	Classification vs Clustering Heuristic Example: K-means Expectation Maximization
EM in practice		EM properties	

EM in practice



Similar to K-means

 $\gamma_i^{(t)}$'s:

for k = 1, 2

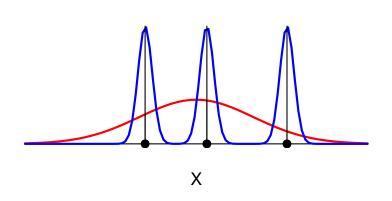
- guaranteed to find a local maximum of the complete data likelihood
- somewhat sensitive to initial conditions

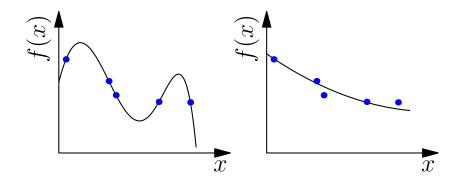
Better than K-means

- Gaussian distributions can model clusters with different shapes
- all data points are smoothly used to update all parameters

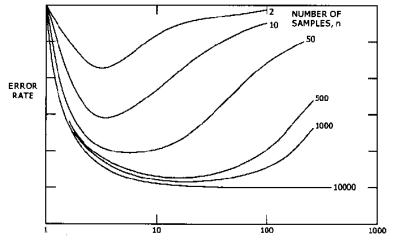
Model Selection and Overfitting

Overfitting





Giampiero Salvi	Lecture 4: Probabilistic Learning
Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	
Overfitting: Phoneme Discri	mination



NUMBER OF MIXTURES, m

Giampiero Salvi	Lecture 4: Probabilistic Learning
Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor	
Occam's Razor	

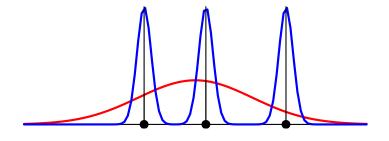
Choose the simplest explanation for the observed data

Important factors:

- number of model parameters
- number of data points
- model fit to the data

Overfitting and Maximum Likelihood

we can make the likelihood arbitrary large by increasing the number of parameters



Occam's Razor and Bayesian Learning

Fitting Probability Models Unsupervised Learning Model Selection and Occam's Razor

Remember that:

$$P(\mathbf{x}_{\mathsf{new}} | \mathcal{D}) = \int_{ heta \in \boldsymbol{\Theta}} P(\mathbf{x}_{\mathsf{new}} | heta) P(heta | \mathcal{D}) d heta$$

Intuition:

More complex models fit the data very well (large $P(D|\theta)$) but only for small regions of the parameter space Θ .

Lecture 4: Probabilistic Learning

Giampiero Salvi

Summary

Fitting Probability Models

- Maximum Likelihood Methods
- Maximum A Posteriori Methods
- Bayesian methods

2 Unsupervised Learning

- Classification vs Clustering
- Heuristic Example: K-means
- Expectation Maximization

3 Model Selection and Occam's Razor

If you are interested in learning more take a look at:

C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer Verlag 2006.