
Fundamentals of Distributed Control Systems and the Controller Area Network

Martin Törngren and Lei Feng, CAN and distributed systems Embedded Systems 1

What Is A Distributed System?

- A set of nodes connected by the network, cooperating to achieve a common goal
 - Node: a μ C +I/O + communication interface
 - One or multiple networks: wired, wireless

Distributed systems - prelude

- Humans make up distributed systems
- Three communicating persons
 - Direct voice communication
 - Separate phones and lines per pair
 - Phone conference

Note: Logical vs. Physical topology; Point to point vs. Multi-/Broadcast

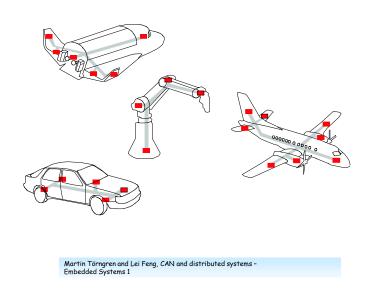
Martin Törngren and Lei Feng, $\it CAN$ and distributed systems Embedded Systems 1

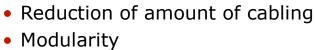
Types of communication

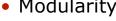
- Topology
- Periodic, sporadic, aperiodic
- Consistency constraints?
 - When, or what extent can this be tolerated?
- Timing constraints?
- Reliability constraints?
 - What should be done when communication no longer works well?
 - Acknowledged vs. Non acknowledged com.?
- Buffered vs. Non-buffered?

Martin Törngren and Lei Feng, CAN and distributed systems -

.







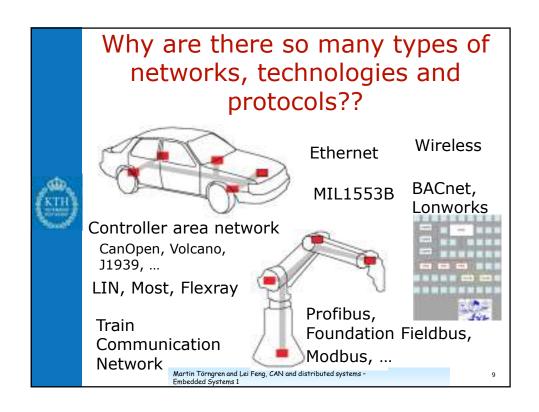
Why distributed systems?

Why distributed systems?

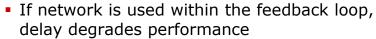
- Local intelligence, diagnostics
- Performance
- Fault-tolerance
- Organizational constraints
 - Not always motivated from a systems viewpoint

Martin Törngren and Lei Feng, CAN and distributed systems -Embedded Systems 1

Reducing Cables with Network


- Network transfers digital signals that have strong protection against noise
 - Increase data integrity

- Reduce the cost of cables, connectors, and noise protection for analog signals
- Simplify system complexity; increase system reliability (fewer connectors)
- Shared resources and information: shared sensors, many-to-many msg.
- Promote modularity: component based system


Martin Törngren and Lei Feng, CAN and distributed systems - $\operatorname{\mathsf{Embedded}}$ Systems 1

Why Multiple Processors?
Additional computing power
System topology
Single multiple
Computing Power

Concerns of Networking in Control Systems

- Temporary loss of messages means the control system will run "open loop"
- Intricate end to end timing
 - Node computations and scheduling
 - Preparing and decoding messages
 - Node and network synchronization and scheduling multiple resources
- Inconsistency and partial failures

Martin Törngren and Lei Feng, CAN and distributed systems - Embedded Systems 1

10

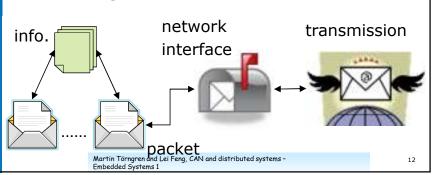
5

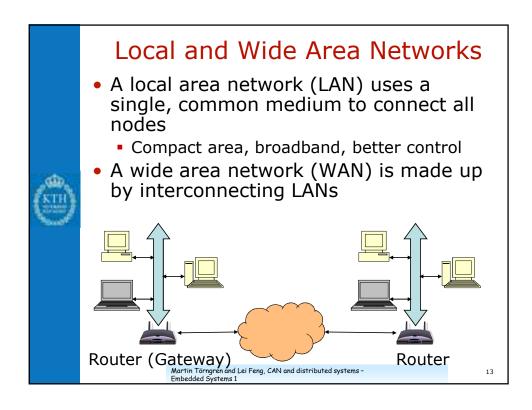
Distributed systems - failure modes

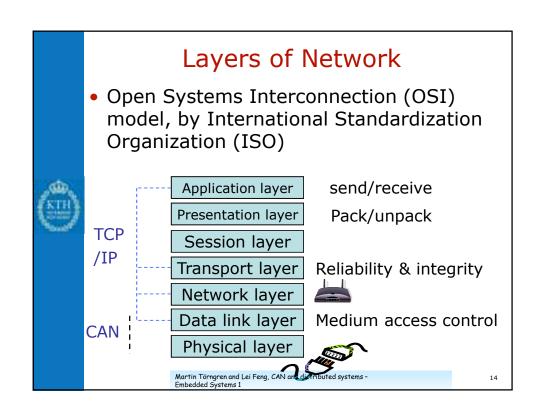
Nodes

- Omission
 - Fail-silent
 - Signalled failure
- Value
 - Wrong data sent
- Timing
 - E.g. too early, too late
- Interference
 - "Babbling idiot"
- Commission
 - Unintended message

Network

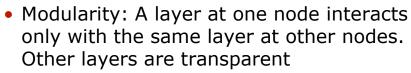

- Omission
 - Transient or permanent
 - Permanent failure special case: Network becomes partitioned!
- - Alteration of value
- **Timing**
 - Network failure causes delay/different delays
- Interference
- Commission

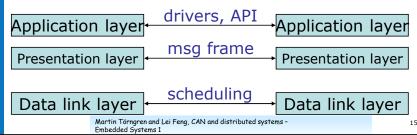

Attributes: Duration, Detectability, Symmetry


Martin Törngren and Lei Feng, CAN and distributed systems – Embedded Systems 1

Network Basics

- To use a network, computers must:
 - Share access to a common medium: bus, radio frequency
 - Encapsulate information into packets
 - Share a common understanding of the meaning of the information

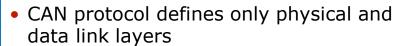




Communication Protocol

- A communication protocol is a set of agreed rules for communications between nodes
- Protocols operate at every layer

Controller Area Network (CAN)


- CSMA/arbitration on message priority (AMP)
- Collision avoidance (CA)
- Message broadcast
- If the bus is busy, a node waits until it is free
- If collision occurs, message with the higher priority continues
- No retransmission

16

- Typical higher-layer protocols (HLP) are:
 - SAE J1939: automotive industry, 250 Kbps
 - CANopen: master-slave architecture, industrial automation
 - DeviceNet: industrial automation, 11 bits ID
 - CAN Kingdom: rules for defining a HLP!
- HLP additions
 - Start-up, failure handling, packaging, "Id" usage, etc.

Martin Törngren and Lei Feng, CAN and distributed systems -Embedded Systems 1

--

