Fourier Analysis

O GIVE A PERFORMANCE of Verdi’s opera

Aida, one could do without brass and woodwinds,

strings and percussion, baritones and sopranos;

all that is needed is a complete collection of tun-
ing forks, and an accurate method for controlling their
loudness.

This is an application to acoustics of “Fourier’s theo-
rem,” one of the most useful facts in many branches of
physics and engineering. A physical “proof” of the theo-
rem was given by Hermann von Helmholtz when he dem-
onstrated the production of complex musical sounds by
suitable combinations of electrically driven tuning torks.
(Nowadays, devices of this kind are called electronic music
synthesizers.)

In mathematical terms, each tuning fork gives off a vi-
bration whose graph as a function of time is a sine wave:

“ AN N

The distance from one peak to the next, the wave-length
or the period, would be ziz of a second if the note were
middle C. The height of each peak is the amplitude, and
roughly measures the loudness. The physical basis of any
musical sound is a periodic variation in air pressure whose
graph might be a curve like this:

Fourier’s theorem says, in graphical terms, that a curve
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A combination of three
puzre tones whose fre-
quency ratios are small
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like the one just shown can

be obtained by adding up
graphs like the first one:

In analytic terms, the theorem says that if y is a periodic

function that repeats, say, 100 times a second, then 9 has an
expansion like

y = 7 sine 2007t + 0.3 sine 4007¢
+ 0.4 sine 6007t + - - -

In each term, the time ¢ is multiplied by 27 times the fre-
quency. The first term, with frequency 100, is called the
fundamental, or first harmonic; the higher harmonics all’
have frequencies that are exact multiples of 100. The coef-
ficients 7, 0.3, 0.4, and so on have to be adjusted to suit the
particular sound which we have called “y.” The three dots
at the end means that the expansion continues indefinitely;
the more terms that are included, the more nearly is the
sum equal to y.

What if y is not periodic—does not repeat itself no mat-
ter how long we wait? In that case, we can think of y as the
limit of a sequence of functions with longer and longer pe-
riods—(which means smaller and smaller frequencies).
Fourier’s theorem would then require a sum which in-
cludes all frequencies, not Just multiples of a given funda-
mental frequency. The expansion is then called a Fourier
integral instead of a Fourier series.

Once we have translated the theorem from physical to
mathematical terms, we have a right to ask for a statement
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Fourier Analysis

and a proof which meet mathematical standards. What
precisely do we allow y to be as a mathematical function?
What precisely do we mean by the sum of an infinite series?
These questions, raised by the. practical demands of
Fourier analysis, have taxed the efforts of every great ana-
lyst since Euler.and Bernoulli; they are still receiving new
answers today.

One new answer, a very practical one, is an efficient and
ingenious technique for numerically carrying out Fourier
analysis on a digital computer. A famous paper by J. W.
Cooley and J. W. Tukey in 1965 exploited the binary nota-
tion inherent in today’s machine computations to make a
radical saving in computing time. By taking maximum ad-
vantage of the symmetry properties of sine waves, they re-
duced the number of operations required to find the
Fourier expansion of a function given at N data points
from N? operations to (2N) times the (logarithm of N to the
base 2). This reduction was enough to mean that in many
applications the effective computational use of Fourier ex-
pansions became feasible for the first time: It was reported,
for example, that for N = 8192, the computations took
about five seconds on an IBM 7094; conventional proce-
dures took half an hour.

The origin of Fourier series actually goes back to a prob-
lem closely related to the musical interpretation of Fourier
analysis with which we began. The problem is that of the
motion of a vibrating string.

Waves on Strings

The “wave equation” which governs the vibration of a
string was derived in 1747 by d’Alembert. He also found a
solution of the equation, in the form of the sum of two
traveling waves, of identical but “arbitrary” form, one mov-
ing to the right and one moving to the left. Now, if the
string is initially at rest (zero velocity), its future motion is
determined completely by its initial displacement from
equilibrium. Thus there is one arbitrary function in the
problem (the one which gives the initial position of the
string before it is released) and there is one arbitrary func-
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tion in d’Alembert’s solution (the one which gives the
shape of the traveling wave). D’Alembert therefore consid.
ered that he had given the general solution of the problem.

However, it is essential to understand that d’Alembert

and his contemporaries meant by “function” what nowa-

days would be called a “formula” or “analytic expression.”

Euler pointed out that there is no physical reason to re-
quire that the initial position of the string is given by a sin-
gle function. Different parts of the string could very well
be described by different formulas (Iine segments, circular
arcs, and so on) as long as they fitted together smoothly.
Moreover, the traveling wave solution could be extended
to this situation. If the shape of the traveling waves
matched the shape of the initial displacement, then Euler
claimed the solution was still valid, even though it was not
given by a single function but by several, each valid in a dif-
ferent region. The point is that for Euler and d’Alembert
every function had a graph, but not every graph repre-
sented a single function. Euler argued that any graph
(even if not given by a function) should be admitted as a
possible initial position of the string. D’Alembert did not
accept Euler’s physical reasoning.
In 1755 Daniel Bernoulli Jjoined the argument. He
found another form of solution for the vibrating string,
using “standing waves.” A standing wave is a motion of the
string in which there are fixed “nodes” which are station-
ary; between the nodes each segment of the string moves
up and down in unison. The “principal mode” is the one
without nodes, where the whole string moves together.
The “second harmonic” is the name given to the motion
with a single node at the mid-point. The “third harmonic”
has two equally-spaced nodes, and so on. At any instant, in
each of these modes, the string has the form of a sine
curve, and at any fixed point on the string the motion in
time is given by a cosine function of time. Each “harmonic”
thus corresponds to a pure tone of music. Bernoulli’s
method was to solve the general problem of the vibrating
string by summing an infinite number of standing waves.
This required that the initial displacement be the sum of
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Fourier Analysis
an infinite number of sine functions. Physically it meant
that any sound produced by the string could be obtained as
a sum of pure tones.

Just as d’Alembert had rejected Euler’s reasoning, now
Euler rejected Bernoulli’s. First of all, as Bernoulli ac-
knowledged, Euler himself had already found the standing
wave solution in one special case. Euler’s objection was to
the claim that the standing-wave solution was general—ap-
plicable to all motions of the string. He wrote,

For consider that one has a string which, before release,
has a shape which can’t be expressed by the equation

y = asin (7x/a) + Bsin 2mx/a) + -

There are none who doubt that the string, after a sudden
release, will have a certain movement. It’s quite clear that
the figure of the string, the instant after release, will also be
different from this equation,-and even if, after some time,
the string conforms to this equation, one cannot deny that
before that time, the movement of the string was different
from that contained in the consideration of Bernoulli.

Bernoulli’s method involved representing the initial po-
sition as an infinite sum of sine functions. Such a sum is a
concrete analytic expression which Euler would have re-
garded as a single function, and therefore, to his way of
thinking, could not represent an initial position composed
of several distinct functions joined together. Moreover, it
seemed evident to Euler that the sine series couldn’t even
represent an arbitrary single function, for its ingredients
are all periodic and symmetric to the origin. How then
could it equal a function which lacked these properties?

Bernoulli did not yield his ground; he maintained that
since his expansion contained an infinite number of unde-
termined coefficients, these could be adjusted to match an
arbitrary function at infinitely many points. This argument
today seems feeble, for equality at an infinite, number of
points by no means guarantees equality at every point. Nev-
ertheless, as it turned out, Bernoulli was closer to the truth

than Euler.
Euler returned to the subject of trigonometric series in
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Fourier Analysis.

cation for this geometric language (orthogonal means per-
pendicular) will appear later on in our sto‘ry.

In order to appreciate Fourier’s work, it is essential to
understand that Euler believed to the end that only a very
special class of functions, given everywhere by a single ana-
lytic expression, could be represented by a sine.or cosine
series. Only in' these special cases did he believe his coeffi-
cient formula to be valid.

Fourier’s use of sines and cosines in studying heat flow
was very similar to Bernoulli’s method of studying vibra-
tions. Bernoulli’s standing wave is a function of two vari-
ables (time ¢ and space x) which has the very special prop-
erty that it factors into a function of space times a function
of time. For such a product to satisfy the vibrating string
equation, the two factors must both be sines or cosines.
The boundary conditions (ends fixed, initial velocity zero)
and the length of the string then determine that they will
be of the form sin nx and cos mt.

When Fourier derived his equation for heat conduction,
he found that it too had special solutions which were fac-
torable into a function of space times a function of time. In
this case the function of time is exponential rather than
trigonometric, but if the solid whose heat flow we are
studying is rectangular, we again obtain trigonometric
functions of space.

~ Suppose, for instance, that we have a block of metal
whose surface is maintained at a fixed temperature. Then
physical considerations show that the interior temperature
distribution at time ¢ = 0 is sufficient to determine the inte-
rior distribution at all later times. But this initial tempera-
ture distribution can be arbitrary. Fourier asserted neverthe-
less that it is equal to the sum of a series of sines and cosines. In
this he was repeating Bernoulli’s point of view. But
whereas Bernoulli had in mind only those functions which
are formed analytically by a single expression, Fourier ex-
plicitly included functions (temperature distributions)
given piecewise by several different formulas. In other
words, he was asserting that the distinction between “func-
tion” and graph, which had been implicitly recognized by
all previous analysts, was nonexistent; just as every “func-
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tion” has a graph, so CVery graph represents 4 function —
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It is a tribute to the insight of Legendre, Laplace, and
Lagrange that they awarded Fourier the Grand Prize of
the Academy despite the glaring defects ;
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Fourter Analysis

For Fourier’s master stroke came after he arrived at Euler’s
formula. At this point he noticed, as Fuler had, that the
simple formula could have been obtained in one line, by
using the orthogonality of the sines. But then he observed
further, as no one before him had done, that the final for-
mula for the coefficients, and the derivation by the ortho-
gonality of the sines, remain meaningful for any graph
which bounds a definite area—and this, for Fourier,
meant any graph at all. He had already computed the
Fourier series for a number of special examples. He found
numerically in every case that the sum of the first few
terms was very close to the actual graph which generated
the series. On this basis, he proclaimed that every tempera-
ture distribution—or, if you will, every graph, no matter
how many separate pieces it consists of —is representable
by a series of sines and cosines. It should be clear that while
a collection of special examples may carry conviction, it is
in no sense a proof as that word was and is understood by
mathematicians. “It was, no doubt,” says Langer, “partially
because of his very disregard for rigor that he was able to
take conceptual steps which were inherently impossible to
men of more critical genius.”

Fourier was right, even though he neither stated nor
proved a correct theorem about Fourier series. The tools
he used so recklessly give his name a deserved immortality.
To make sense out of what he did took a century of effort
by men of “more critical genius,” and the end is not yet in

sight.

What is a Function?

First of all, what about Euler’s seemingly cogent objec-
tions of half a century before? How was it possible that a
sum of periodic functions (sines and cosines) could equal
an arbitrary function which happened not to be periodic?
Very simply. The arbitrary function is given only on a cer-
tain range, say from 0 to . Physically, it represents the ini-
tial displacement of a string of length m, or the initial tem-
perature of a rod of length . It is only in this range that
the physical variables are meaningful, and it is precisely in
this range that the Fourier series equals the given function.
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Fourier Analysis

of an arbitrary function includes creatures beyond anyone’s
hope of drawing or visualizing. =~ -

It is readily evident that one can hardly expect this 0-1
function of Dirichlet to be represented by a Fourier series.
Indeed, sincq the area under such a “curve” is undefined,
and since the Euler coefficients are obtained by integrating
(i.e., computing an area), Fourier could not have found
even a single term of the Fourier series for this example.
But of course, the practical-minded physicist Fourier did
not have in mind such perverse inventions of pure mathe-
matics as this.

On the positive side, Dirichlet proved, correctly and ri-
gorously, that if a function f has a graph which contains
only a finite number of turning points, and is smooth ex-
cept for a finite number of corners and jumps, then the
Fourier series of f actually has a sum whose value at each
point is the same as the value of f at that point. (Assuming
that at points where f has a jump, it is assigned a value
equal to the average of the values on the left and on the
right.) :

This is the result that used to be presented in old-fash-
ioned courses on engineering mathematics, on the
grounds that any function which ever arises in physics
would satisfy “Dirichlet’s criterion.” It is plausible that any
curve which can be drawn with chalk or pen satisfies
Dirichlet’s criterion. Yet such curves are far from adequate
to represent all situations of physical or engineering
interest.

Let us stress the meaning of Dirichlet’s result. The for-
mula y(x) = b, sin x + b, sin 2x + by sin 3x + + - - istrue in
the following sense. If we choose any given value x, be-
tween 0 and 7, then y(x,) is 2 number, and the right hand
side is a sum of numbers. It is asserted that if enough terms
are taken in the series, the sum of numbers is as close as
you wish to the value of'y at the given point x,. This is point-
wise convergence, the seemingly simplest, and in reality the

most complicated, of many possible notions of conver-
gence. From a purely mathematical viewpoint, Dirichlet’s
result was not an end but a beginning. What a mathemati-
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Fourier Analysis
more powerful notion of the integral than Riemann’s. One
can think of these sets in the following way: if you pick a
point between 0 and 1 at random, your chance of landing
in any given interval just equals the length of that interval.
If your chance of landing on a given set of points is zero,
then that set is said to have measure zero. ,

The length of a point is zero by definition. If-we add the
lengths of several points, this sum is also zero. Therefore, a
set of finitely many-points has measure zero. There are also
sets of measure zero with infinitely many points. It is even
possible for a set to have measure zero and yet to be “every-
where dense”—i.e., have a representative in every interval,
however small. In fact, the set of all rational numbers is
precisely such an everywhere dense set of measure zero.
Thus from Lebesgue’s viewpoint, Dirichlet’s 0-1 function
does have a Fourier expansion—and every coefficient is
zero, since the function is zero “almost everywhere,” as Le-
besgue put it. This is the kind of mathematics that makes
“practical” people shudder. What use is a Fourier expan-
sion if it gives the wrong answer, not just at a few isolated
points, but on an everywhere dense set?

But even if we are willing to accept convergence only “al-
most everywhere” (i.e., except on a set of measure zero),
we may not get it. In 1926 Kolmogorov constructed an in-
tegrable function whose Fourier series diverged everywhere.
So integrability alone certainly is not a basis for even an “al-
most everywhere” theory.

Generalized Functions

A different approach, and one very much in the main-
stream of modern analysis, is to take the “orthogonality”
property of the sine wave much more seriously. If f'is a
w—perlodlc function whose square is integrable, it follows

from the orthogonality of sines that- f f2=b2 4+ b +

bs® + - - - where the b’s are the coefficients in the sine wave

expansion of f. (For the proof, evaluate f fi= f ff
0 0

by expanding each factor f in its sine series, multiplying
the first series by the second, and integrating term by
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From the Hilbert-space view-point, the subtleties and
difficulties of Fourier analysis seem to €vaporate like mist,
Now the facts are simply proved and simply stated: a func-
tion is in I, (Le., is Square-integrable) if and only if jis -
Fourier series is convergent in the sense of Ly. (This fact
has gone down in history as the Riesz-Fischer theorem.)

There remained, however, the open question as to how
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Fourier Analysis

bad the pointwise behavior of L, functions could be. In
view of Kolmogorov’s example of an integrable function
whose Fourier series diverged everywhere, there was a
great sensation when in 1966 Lennart Carleson proved
that if a function is square integrable, its Fourier series con-
verges pointwise almost everywhere. This includes as a spe-
cial case the new result that a continuous periodic function
has a Fourier series that converges almost everywhere.
The theory was rounded off when, also in 1966, Katznelson
and Kahane showed that for any set of measure zero there
exists a continuous function whose Fourier series diverges
on that set.

It is interesting to observe that this modern development
really involves a further evolution of the concept of func-
tion. For an element in L, is not a function, either in Fuler’s
sense of an analytic expression, or in Dirichlet’s sense of a
rule or mapping associating one set of numbers with an-
other.

It is function-like in the sense that it can be subjected to
certain operations normally applied to functions (adding,
multiplying, integrating). But since it is regarded as un-
changed if its values are altered on an arbitrary set of mea-
sure zero, it is certainly not just a rule assigning values at
each point in its domain.

As we have seen, the development of Fourier analysis in
the nineteenth century achieved logical rigor, but at the
price of a certain split between the pure and applied view-
points. This split still exists, but the thrust of much recent
and contemporary work is to reunite these two aspects of
Fourier analysis.

First of all, the concept of Hilbert space, abstract as it is,
provides the foundation of quantum mechanics. It has
therefore been an essential topic in applied mathematics

for the last fifty years. Moreover, the major expansion of

Fourier analysis, in Norbert Wiener’s generalized har-
monic analysis, and in Laurent Schwartz’s theory of gener-
alized functions, is directly motivated by applications of the
most concrete kind. For instance, in electrical engineering
one often imagines that a circuit is closed instantaneously.
Then the current would jump from a value of zero before
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" the switch is closed to a value of, say,
closed. Clearly there is no finite rate
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DOES MATHEMATICS WORK?

WHAT GIVES IT ITS POWER?

In this remarkable and innovative book two eminent mathematicians, Philip J. Davis
and Reuben Hersh offer an intriguing view of their science and demonstrate that
‘mathematical truth, like other kinds of truth is fallible and corrigible’.

With lucidity, erudition and wit, the authors have created a work of history,
reflection, exposition and philosophy which presents both the complexities and the
beauty of a subject which is one of the most pervasive and esoteric

of human endeavours.

‘Nothing quite like this book has been written about mathematics’ —New Yorker

“What hath Godel, Escher and Bach wrought? This wonderful book, evidently, in the
same multidisciplined tradition . . . this is a book, I suspect, that in its combination of
enthusiasm for its subject, expository skill and humane sympathies, will be around
for along, long time’ — Robert Taylor in the Boston Globe

‘An excellent and essentially unique book . . . Thope it obtains the wide readership
- that it deserves’ — Roger Penrose in The Times Literary Supplement

The cover shows the woodcut *Mankind Breaking through the Clouds of Heaven and
Recognition of New Spheres’ attributed to C. Flammarion, in the
Deutsches Museum, Munich
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