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SF1624 Algebra och geometri
L dsningsbrslag till modelltentamen

DEL A

(1) (a) Anvand Gauss-Jordans metod for att bestamnmarigsmangden till ekvationssy-

stemet
2[L‘1 + 4[L‘2 + 21‘3 + 2ZL‘4 = 2,
31‘1 + 61‘2 — rs — 9ZL‘4 = ]_1,
Ty + 21’2 + 3373 + 71’4 = 3.

3)
(b) Bestam villkoret pa, b ochc for att det ska finnas ldsningar till ekvationssystemet
207 4+ 4dxy + 223 4+ 24 = a,
31’1 + 6372 — r3 — 91’4 = b
Ty + 2372 + 3373 + 71’4 =

)

(1)

Losning. a) Vi anvander Gauss-Jordanelimination pa totalmatrigesystemet, dvs
24 2 2] 2 i 12 1 1] 1 r
36 -1 =9\ 11 |~ |rm—3rn|~[00 -4 -12] 8 |~ —1r2
L2 3 7|3 7‘3—27“1 00 2 6| —4 s+ 3o

1 2 11 T —To 1 2 0 — 3

0013 -2 |~ To ~1 001 3|-2

0000 O T3 000 0] O

Vi har tva fria variabler eftersom det saknas ledande ettalia och fjarde kolonnen.

For dessa variabler far vi infora parametrar= s ochz, = t. Sedan kan vi anvanda
forsta ekvationen for att l0sa ut och

Ty =3—2x9+ 224 =3—2s+ 2t
och den andra ekvationen for att [0saryitsom
r3=—2—3xy =—2—3t.
Alltsa ges losningsmangden av

(1, T, 23, 4) = (3,0,—2,0) + s(—2,1,0,0) +¢(2,0,—3,1)
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dars ocht ar reella parametrar.
b) For att se vilka hogerled som fungerar behover vinagtfamma radoperationer pa

(a,b, c)t. Det finns losingar till systemet precis da den tredje ndolée helt noll nar
vansterledet blir noll.

a %Tl éa 1
b |~ rm—3r |~ b- ?a ~ —17s
C T3—§T1 c—§a T3+§T2
1 1
5a 5a
~ —1b+ %a = —%b + %a
c+%b—%a—za c+5b—3a
Villkoret for att det ska finnas losningar ar alltsa att
1 5
—b—-a=0
c+ 5 4(1 ,

vilket ocksa kan skrivas som att
Ha — 2b — 4¢ = 0.
O

Svar:

a) Losningsmangdenges@, z2, x3, v4) = (3,0, —2,0)+s(—2,1,0,0)+¢(2,0, -3, 1),
dars ocht ar reella parametrar.

b) Villkoret for att det ska finnas losningar gesfav— 2b — 4¢ = 0.
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(2) Ett omrade? i planetR? avbildas genom den linjara avbildningémed standardmatris

()

pa parallellogrammen med horn i punktefa0), (5, 1), (4,2) och(9, 3).
(a) Bestam omradeb. (Anvand egenskaperna hos linjara avbildningar, exdvigatt

linjestycken avbildas pa linjestycken.) (3)
(b) Jamfor arean a2 med arean av bildeh'(€2). (1)
y

| P

FIGUR 1. Bilden,T(Q2), av omradef) under avbildningefi’.

Losning. a) Eftersom linjestycken avbildas pa linjestycken genartirgar avbildning
racker det att ta reda pa var hornen avbildas. En linjaildning avbildar nollvek-
torn pa nollvektorn. Dessutom &, 3) summan av vektorern@, 1) och (4,2) i en
parallellogram. Det innebar att vi bara bedver ta redaguburbilderna ays, 1) och
(4,2) ar. Vi staller upp detta som ett ekvationssystem med tigeHed och far da

totalmatrisen
-1 —415 4
1 111 2

och med Gausselimination far vi

-1 415 4 -7
1 111 2 To + 11
1 4]|-5 —4 T+

Y ~Y

372
0 -3| 6 6 —%7’2
1 0] 3 4
0 1|]—-2 =2
Vi har kommit fram till att
3 5 4 4
r(5)=(7) e r(2)=(5)

Alltsa maste? ges av parallellogrammen med horn i punktgrr), (3, —2), (4, —2)
och(3,—-2) + (4, -2) = (7, —4).
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Vi kan ocksa losa uppgiften genom att bestamma matriseden omvanda avbild-
ningen, dvs matrisen far—!, som ar inversmatrisen a. Med hjalp av kofaktorerna

kan vi skriva uppA~! som

PR 1 4\ 1/ 1 4
CdetA\ -1 -1 ) 3\ -1 —1

eftersomdet(A) =1-(—1) —4-(—1) = —1 + 4 = 3 och vi kan sedan berakna

(3= () () -(2)

(950 D))

y

Y

FIGUR 2. Det ursprungliga omradéx.

b) Arean av parallellogrammén((2) kan beraknas som beloppet av determinanten av
matrisen med vektorerr(a, 1) och (4, 2) som kolonnvektorer. Arean ar alltsa

5 4
det ( 1 9 )
areaenheter. Matrisethhar determinamt och darmed forstoras arean med en faktor

3 genomT’, vilket vi ocksa kan se genom att arean av paralellogramihges av
determinanten

det( 7 4)':|3-(—2)—4-(—2)|:|—6+8|:2.

—|5-2—4-1|=[10-4=6

2 =2

Svar:
a) Omradef) ar parallellogrammen med hortid, 0), (3, —2), (4, —2) och(7, —4).
b) Omradetl'(?) har are& areaenheter och ar tre ganger sa stort €oimch med att
determinanten foA ar 3.
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(3) Den vinkelrata projektionen pa planet som ges av étmahz — 2y + 3z = 0 ar en linjar
avbildning och kan darmed beskrivas med hjalp av en m@&astam standardmatrisen
for denna projektion genom att se pa hur den verkar palatdbasvektorerna.  (4)

Losning. En normalvektor for planet ges av koefficienterna i ekvaiooch vi fam =
(1,—2,3). Vi kan projicera de tre standardbasvektorerna pa plaseom att dra bort
projektionen pa normalen.

Nar vi projicerar pa normalen far vi

. e -m_ (1,0,0) - (1,-2,3)! .1 ¢

ol = TR S sy (2, ayp 2 = b2

. _ _&-m__ (0,1,0)"-(1,-2,3)" ;=2 ¢

r0Js €2 _‘ﬁn (1’_2’3)15‘(1’_2’3)25( ) ) ) 14( ) ) )
och

. €3 M_ (07071>t ' (17_273)t t 3 t

oIt = ST 1 gy (1, —z,ap 0 2 T g 23)

Om vi nu laterT vara projektionen pa planet far vi att

1 1
T(él) =€ — Projﬁél = (17 an)t - ﬁ(la _273)t - ﬁ(13727 _3)t

—2 1
T(€2) =é3 — PI‘Ojﬁéz = (07 17 O)t - _(17 _27 S)t = _(27 107 6)t

14 14
och
T(e3) = €3 — Proj,es = (0,0,1)" — i(1 -2,3) = i(—3 6,5)"
3 3 m €3 5 Uy 14 ) ) 14 3 Yy .
Alltsa ges matrisen for projektionen av
1 13 2 -3
A= 7 2 10 6
M\ 3 6 5
O
13 2 =3
Svar: Matrisen for projektionen ges a¥ = ﬁ 2 10 6

-3 6 5
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DeEL B
(4) Betrakta matrisen
-1 2 1 8
-2 4 -2 0
A=l 12 212
-2 4 2 16
(a) Bestam en bas for radrumrhéll A med hjalp av Gausselimination. (3)
(b) Anvand relationen mellan dimensionerna for radrurn oollrun? for att med hjalp
av resultatet fran 4a ocksa bestamma dimensionen awnutiet till A. (1)

Losning. a) Nar vi utfor radoperationer i Gausselimination asdirsie radrummet i
matrisen. Nar vi val har kommit till trappstegsform vetatt de nollskilda raderna
ar linjart oberoende och de utgdr damed en bas for radret.

-1 2 1 8 -7
-2 4 =2 0 To — 2T1
12 21217 rn-n
-2 4 2 16 T4 — 277
1 -2 -1 =8 g
0 0 —4 —16 —1r,

o oo 1 4T rmtin
0 O 0 0 T4
1 -2 -1 -8
0 O 1 4

“ 10 0o 0 o0
0 O 0 O

Darmed utgor de tva vektoreriid, —2, —1, —8) och (0,0, 1, 4) en bas for nollrum-

met till A.

b) Summan av dimensionerna av nollrum och radrum ar lika amtdlet kolonner, ef-
tersom nollrummets dimension ges av antalet kolonner sixmasdedande ettor i
trappstegsformen. Eftersom radrummet har dimen3ifam vi darmed att nollrum-
met dimension — 2 = 2.

O

Svar:
a) En bas for radrummet ges av vektorefha—2, —1, —8) och (0,0, 1,4).
b) Nollrummets dimension &

IRadrummet ar det delrum som spanns upp av radvektoreratrisen.
2Nollrummet till A ar [6sningsmangden till ekvationetr = 0.
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(5) En triangular skarm ska sattas upp i ett horn av ett dar vaggar och tak ar vinkelrata
mot varandra. Anvand vektorprodukfeir att bestamma ett uttryck for skarmens area
om skarmens tre hornpunkter har avstarmm, b cm, respektive: cm fran hornet. (4)

FIGUR 3. Skarmens placering vid taket i ett av rummets horn.

Losning. Vi infor ett ratvinkligt koordinatsystem med rummetsrhésom origo och de
positiva axlarna utmed skarninge av vaggar och tak. Rdrfar vi att skarmens hornpunkter
far koordinater(a, 0,0), (0,b,0) och (0,0, c). For att berakna skarmens area kan vi
anvanda vektorprodukten eftersom langden av vekiioxnv ar arean av den parallel-
logram som spanns upp avochw. Triangelns area blir halften av parallellogrammens
area.

Vi kan berakna vektorer utefter triangelns sidor som

u=(0,b0,0) — (a,0,0) = (—a,b,0)
och
v =1(0,0,¢) — (a,0,0) = (—a,0,b).
Vi beraknar kryssprodukten som
uxv =(—a,b,0)x(—a,0,c)
=0b-¢c—0-0,0-(—a)—(—a)-¢,(—a)-0—=>b-(—a))
= (bc, ac, ab).
Det ar langden av denna vektor som ger arean av paralteiomen och vi far darmed
att triangelns area ar

1 1 1
§|ﬂ X 7| cm? = |§|(bc, ac, ab)| cm? = 5\/17202 + a2c? + a2b? cm?.

Svar: Skarmens area dn/bc + a*c? + a2b? cm?.

3Vektorpr0dukten kallas ocksa for kryssprodukt.
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(6) (a) Forklara varfor detiallmanhet ar enkelt atttdesma egenvardena for dvertriangulara

matriser. (1)
(b) Bestam om mojligt en basbytesmatfisom diagonaliserar den dvertriangulara ma-
trisen
1 2 3
A= 0 4 5
0 0 6
3)

Losning. a) | och med att determinanten for en dvertriangular imagies av produkten
av diagonalelementen kommer det karaktaristiska polytoinat(A — \/) att vara
lika med(a;; — A)(ags — A) -+ (ann, — A) OM A &r en Overtriangulan x n-matris.
Egenvardena som ar nollstallena till det karaktasistipolynomet blir darmed lika
med diagonalelementet,;, ass, . . . , Gpn.

b) For att finna en basbytesmatris som diagonalisedaghover vi finna egenvektorer-
na. Vi har redan hittat egenvardena som enligt del a) arriled1, 4 och6.
For att finna egenvektorerna behover vi [dsa de homogkvetionssystemen som
svarar mo{ A — A\I)x = 0 for dessa egenvarden.
Vi borjar med) = 1 och far med Gausselimination

0 2 3|0 éfrl 01%0 1 01%0
0350 |~|m=2rn|~l001l0]~ 2ry | ~| 0 0 1]0
0 0 5|0 T3 0 0 510 rg — 1079 00 0]0
vilket ger losninger(zy, o, z3) = t(1,0,0) eftersomz, = x3 = 0 och vi kan late
x1 = t for en reell parameter.
For\ = 4 farvi
-3 2 3]0 —571 1 -2 —-110
0 0 5{0 ~ =Ty |~ 0 0 10
0 0 2(0 T3 — £ra 0 0 010
ochlosningen ges dwy, o, z3) = (2, 3,0) eftersomez = 0 och vi kan latar, = 3¢
for en reell parametetr
Till slut far vi for A = 6
-5 2 310 —%rl 1 -2 _§ 0 1+ 21 10 —% 0
0 -2 5[0 | ~] 2ra|~[0 1T =2]0]~ o [~ 01 =210
0 0 0|0 T3 0 0 010 r3 0 0 010

och losningen ges alry, o, 3) = t(16,25,10) eftersom vi kan lata:; = 10¢ for
en reell parameter

Vi kan fa den sokta basbytesmatrisen genom att valjavadgorerna som kolonner
och kan darmed valja
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1 2 16
P=10 3 25
0 0 10

Det gar att kontrollera att rakningarna stammer gendrmagrtera” och berakna
produktenP~! AP och se att det blir en diagonalmatris med elemeiteroch6 pa

diagonalen.
Vi far
2 1
71130—202 1_§Tg
=—| 0o 10 —-25 |=|0 I -2
0\ 0 o 3 0o 0 4
10
1—%% 1 2 3 1 2 16 1 00
prAp=[0 3§ -2 0 45 032 |=1040
0 0 + 006 0 0 10 006
O
Svar:

1 2
b) MatrisenP = | 0 3 25 | aren basbytesmatris som diagonalisetar
0 0 10

Var god \and!
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DeL C

(7) Nar vi med den minsta-kvadratmetoden forsoker liéa ellips med ekvation
ar® +bry + cy® =1
som bast passar till punkter(® 2), (—2, 1), (—1, —2) och(2, —1) leds vi till ekvationen

19 2 28\ [a 13
(1) 2 28 20 | (o] = 2
28 20 34 | \c¢ 10

som har losningen = 0,10, b = —0,15 ochc¢ = 0,30.
(a) Utfor berakningarna som leder fram till ekvationeh (&5ausseliminationen av ek-

vationssystemet (2) behover inte utforas.) (3)
(b) Forklara vad som menas med att ldsninges 0,10, b = —0,15 ochc = 0,30 ar
bast iminsta-kvadratmening (1)

Losning. a) Vi staller forst upp de ekvationer som skulle vara ufiggyom alla fyra
punkter lag pa ellipsen. Da skulle vi ha

a-22 4+ b-2-2 + 22 =1,
a- (-2 + b-(=2)-1 + c¢-12 = 1,
a (=1 4+ b-(=1)-(=2) + ¢ (=2 = 1,
a-2> + b-2-(=1) + c- (=12 = 1.
dvs uttryckt som matrisekvation
4 4 4 1
4 -2 1 1
1 2 4 |1
4 =2 1 1
Normalekvationen ges nu av
4 4 1 4 i _;1 11 a 4 4 1 4 }
4 -2 2 =2 1 92 4 bl=14 -2 2 =2 1
4 1 4 1 4 _9 1 c 4 1 4 1 1
dvs
49 2 28 a 13
(2) 2 28 20 bl = 2
28 20 34 c 10
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b) Att I6sningen ar bastminsta-kvadratmeninetyder att skillnaden mellan hogerled
och vansterled i den ursprungliga ekvationen ar virstainot det rum som spanns
upp av kolonnerna. Darmed ar langden av denna vektatesadom mojligt, vilket
betyder att summan av kvadraterna av avvikelserna atesasom mojligt. (I det
har fallet ligger de fyra punkterna pa en ellips, sa skitlen mellan hdgerled och
vansterled ar0,0,0,0) nara = 0,1, b = —0,15 och¢ = 0,3 och summan av
kvadraterna ar darmed ocksa

O
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(8) LatQ, vara den kvadratiska formen som ges av
Qa(,y,2) = a(z® + ¥ + 2%) + 2zy + 2y»
dara ar en reell parameter.

(a) Bestam for vilka varden pa parametersomq@), ar positivt definit.* (3)
(b) Lata vara det minsta vardet for vilké2, ar positivt semidefinit. Bestam det storsta
varde(, antar pa enhetssfaref + y? + 22 = 1. (1)

Losning. a) Den symmetriska matrisen svarar mot

Qa(w,y,2) = a(2® +y* + 2°) + 2xy + 2y2
ar
a 1 0
1 a1
01 a
For att se pa orfy,, ar positivt definit behdver vi se om alla egenvarden &itp@. Vi
far egenvardena som losningarna till den karaktatistiekvationemet(A — A1) =

A=

0.
a— A 1 0
det 1 a— A 1
0 1 a— A
a— A 1 1 1
= (a — \) det 1 a— — det 0 a— )\

=(@=MN(a=A?-1) -1 =(a=MN((a—A)?*-2)

Darmed har vi egenvardena= a, A = a + v2 och A = a — /2. Det minsta
egenvardet 24 — /2 och for att detta ska vara positivt kravs att- /2.

b) Oma < /2 finns ett negativt egenvarde, 8&= /2 ar det minsta varde pasom
gor atta ar positivt semidefinit. Vi har da att det storsta egededar\ = 2v/2
och det minsta = /2 — /2 = 0. Darmed galler atd < Q,(z,y,2) < 2v/2 for
allaz,y, 2 medz? + 4% + 22 = 1. Om vi har ordnat egenvardena i storleksordning
A1 < Ay < )\ far vi efter diagonalisering att

Qa(z,y,2) = M2 + My + 232 < \3(2? + 92 +2%) = X3

for punkter pa enhetssfaren.
Det storsta vardet uppnas r{ar y, z) ar en egenvektor med egenvagig?.

Svar:
a) Q, ar positivt definit omu > /2.
b) Det storsta vardep . (z,y, z) antar pa enhetssfareny/2.

4Q ar positivt definitom Q(z, y, z) > 0 for alla(z, y, z) # (0,0,0).
5Q arpositivt semidefiniom Q(z,y,z) > 0foralla(z,y, 2).
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(9) For varje naturligt tah > 2 kan vi se pa det delruit avR™ som ges av losningarna till
ekvationene; + x5 + - -+ x, = 0.
(a) Visa att vektorerng;, = e; —eq, fo = ex —e3,..., fno1 = €,_1 — €, UtQOr en bas
for V omey,eo,..., e, ar standardbasvektorerna f&f. (2)
(b) Anvand Gram-Schmidts metod for att utifran den gibasen forl” skapa en orto-
gonal bas fo” med avseende pa den euklidiska inre produkteR’ha (2)

Losning. a) For att bestamma dimensionen fdikkan vi se att matrisen som beskriver
ekvationssystemet far bestar av en enda nollskild rad. Detta betyder att radrumme
har dimensiori och eftersom antalet kolonner@akommer nollrummet, dv¥’, att
ha dimensiom — 1.

Alla de n — 1 vektorernaf, fo, ..., f,_1 ligger i V eftersom de har en koordinat
som arl, en som ar-1 och resten ar noll.

Darmed aterstar bara att visa dit fo,..., f,_1 ar linjart oberoende. Antag att
alfl + (lgfz + -+ an_lfn_l = 0. Vifar da att

0 = CL1(€1 — 62) + CL2(€2 — 63) + -+ an,l(en,l — €n)
=ae; + (ag —ar)es + -+ (a1 — ap_2)€n_1 — Ay_1€,.

Eftersomey, es, . .., e, utgdr en bas foR” innebar detta att
) =G —a; =+ = Ap_1 — Ay = Ap_1 = 0.

Den forsta ekvationen innebar att = 0 och nar vi satter in detta i den andra far

Viay, = 0. Till slut far viatta; = as = --- = a,,_; = 0 och vi drar slutsatsen att
fi, f2, ..., fn_1 @rlinjart oberoende och darmed bildar en basifor
b) Vi ska bygga upp en ortogonal bas fidrsom bestar av vektorer, gs, . . ., gn_1.

Det forsta steget ar att lata = f; = e; — e,. Vi bildar sedan nasta vektor genom
att taf, oh dra bort projektionen af, pae, och vi far da

go = f2 — Pl“Ojg1 f2 =€y — €3 — EZ?:E;;:EZ:EE;

—1 1 1
— €9 — €3 — 7(61 — 62) = 561 + 562 — €3.

(e1 —e2)

Vi kan ga vidare ett steg och far da eftersgign= e; — e, att f3 - g; = 0 och
fa-ga=—1.Vidare &rg, - go = ; + ; + 1 = 3 vilket ger

g3 = fz3— Pl"Oj91 J3— Pl"Oj92 f3=[f3— 3;/1292
=3 641+ %(%161 + 5e2 —e3)
= 561 -+ §€2 -+ §€3 — €4
Vi kan nu ana ett monster och kan forsoka visa att

1 1 1 .
gi = —e1+ €+ -+ <€ — €41, forz:1,2,...,n—1.
7 7 7

Vi ser att en vekton = (zy,x,...,x,) & ortogonal motf; precis omv - f; =
x; — x;p1 = 0, dvs omi-koordinaten ar lika med: + 1)-koordinaten. Darmed
far vi att vektorng; som ska vara ortogonal mot; = span{gi,¢2,...,9;-1} =
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span{ fi, fa, ..., fi_1} maste ha alla de forstakoorinaterna lika. Der(i + 1)-
koordinaten maste vara lika méd+ 1)-koordinaten forf; eftersom alla vektorer i
W; har (i + 1)-koordinat noll. Darmed ser vi att

gi=k(er+ea+ - +e)—eip
for nagot talk. Eftersomy; ska ligga i delrummet” maste summan av koordinaterna
vara noll, vilket gerk - i — 1 = 0, dvsk = 1/i. Alltsa har vi visat att

1 1 1 .
gi=—e1+ e+ -+ <€ — €41, forz:1,2,...,n—1.
7 7 7

O

Svar:
b) Den ortogonala ba§' = {g1, go, - .., gn_1} SOm fas via Gram-Schmidt metod ges

avg =lep+leg b le —e fOri=1,2,...,n—1.




