
SF1624 Algebra och geometri
Lösningsf̈orslag till modelltentamen

DEL A

(1) (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssy-
stemet







2x1 + 4x2 + 2x3 + 2x4 = 2,
3x1 + 6x2 − x3 − 9x4 = 11,
x1 + 2x2 + 3x3 + 7x4 = −3.

(3)
(b) Bestäm villkoret påa, b ochc för att det ska finnas lösningar till ekvationssystemet







2x1 + 4x2 + 2x3 + 2x4 = a,
3x1 + 6x2 − x3 − 9x4 = b,
x1 + 2x2 + 3x3 + 7x4 = c.

(1)

Lösning. a) Vi använder Gauss-Jordanelimination på totalmatrisen för systemet, dvs




2 4 2 2 2
3 6 −1 −9 11
1 2 3 7 −3



 ∼





1
2
r1

r2 − 3
2
r1

r3 − 1
2
r1



 ∼





1 2 1 1 1
0 0 −4 −12 8
0 0 2 6 −4



 ∼





r1

−1
4
r2

r3 + 1
2
r2





∼





1 2 1 1 1
0 0 1 3 −2
0 0 0 0 0



 ∼





r1 − r2

r2

r3



 ∼





1 2 0 −2 3
0 0 1 3 −2
0 0 0 0 0





Vi har två fria variabler eftersom det saknas ledande etta iandra och fjärde kolonnen.
För dessa variabler får vi införa parametrar,x2 = s ochx4 = t. Sedan kan vi använda
första ekvationen för att lösa utx1 och

x1 = 3 − 2x2 + 2x4 = 3 − 2s + 2t

och den andra ekvationen för att lösa utx3 som

x3 = −2 − 3x4 = −2 − 3t.

Alltså ges lösningsmängden av

(x1, x2, x3, x4) = (3, 0,−2, 0) + s(−2, 1, 0, 0) + t(2, 0,−3, 1)
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därs ocht är reella parametrar.
b) För att se vilka högerled som fungerar behöver vi utföra samma radoperationer på

(a, b, c)t. Det finns lösingar till systemet precis då den tredje raden blir helt noll när
vänsterledet blir noll.





a
b
c



 ∼





1
2
r1

r2 − 3
2
r1

r3 − 1
2
r1



 ∼





1
2
a

b − 3
2
a

c − 1
2
a



 ∼





r1

−1
4
r2

r3 + 1
2
r2





∼





1
2
a

−1
4
b + 3

8
a

c + 1
2
b − 1

2
a − 3

4
a



 =





1
2
a

−1
4
b + 3

8
a

c + 1
2
b − 5

4
a





Villkoret för att det ska finnas lösningar är alltså att

c +
1

2
b − 5

4
a = 0,

vilket också kan skrivas som att

5a − 2b − 4c = 0.

�

Svar:
a) Lösningsmängden ges av(x1, x2, x3, x4) = (3, 0,−2, 0)+s(−2, 1, 0, 0)+t(2, 0,−3, 1),

därs ocht är reella parametrar.
b) Villkoret för att det ska finnas lösningar ges av5a − 2b − 4c = 0.
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(2) Ett områdeΩ i planetR2 avbildas genom den linjära avbildningenT med standardmatris

A =

(

−1 −4
1 1

)

på parallellogrammen med hörn i punkterna(0, 0), (5, 1), (4, 2) och(9, 3).
(a) Bestäm områdetΩ. (Använd egenskaperna hos linjära avbildningar, exempelvis att

linjestycken avbildas på linjestycken.) (3)
(b) Jämför arean avΩ med arean av bildenT (Ω). (1)

y

x

FIGUR 1. Bilden,T (Ω), av områdetΩ under avbildningenT .

Lösning. a) Eftersom linjestycken avbildas på linjestycken genom en linjär avbildning
räcker det att ta reda på var hörnen avbildas. En linjär avbildning avbildar nollvek-
torn på nollvektorn. Dessutom är(9, 3) summan av vektorerna(5, 1) och(4, 2) i en
parallellogram. Det innebär att vi bara beöver ta reda påvad urbilderna av(5, 1) och
(4, 2) är. Vi ställer upp detta som ett ekvationssystem med två högerled och får då
totalmatrisen

(

−1 −4 5 4
1 1 1 2

)

och med Gausselimination får vi
(

−1 −4 5 4
1 1 1 2

)

∼
[

−r1

r2 + r1

]

∼
(

1 4 −5 −4
0 −3 6 6

)

∼
[

r1 + 4
3
r2

−1
3
r2

]

∼
(

1 0 3 4
0 1 −2 −2

)

Vi har kommit fram till att

T

(

3
−2

)

=

(

5
1

)

och T

(

4
−2

)

=

(

4
2

)

Alltså måsteΩ ges av parallellogrammen med hörn i punktern(0, 0), (3,−2), (4,−2)
och(3,−2) + (4,−2) = (7,−4).



4 SF1624 Algebra och geometri - Modelltentamenentamen

Vi kan också lösa uppgiften genom att bestämma matrisen för den omvända avbild-
ningen, dvs matrisen förT−1, som är inversmatrisen avA. Med hjälp av kofaktorerna
kan vi skriva uppA−1 som

A−1 =
1

det A

(

1 4
−1 −1

)

=
1

3

(

1 4
−1 −1

)

eftersomdet(A) = 1 · (−1) − 4 · (−1) = −1 + 4 = 3 och vi kan sedan beräkna

T−1

(

5
1

)

=
1

3

(

1 4
−1 −1

) (

5
1

)

=
1

3

(

1 · 5 + 4 · 1
−1 · 5 − 1 · 1

)

=

(

3
−2

)

och

T−1

(

4
2

)

=
1

3

(

1 4
−1 −1

) (

2
2

)

=
1

3

(

1 · 4 + 4 · 2
−1 · 4 − 1 · 2

)

=

(

4
−2

)

.

y

x

FIGUR 2. Det ursprungliga områdetΩ.

b) Arean av parallellogrammenT (Ω) kan beräknas som beloppet av determinanten av
matrisen med vektorerna(5, 1) och(4, 2) som kolonnvektorer. Arean är alltså

∣

∣

∣

∣

det

(

5 4
1 2

)∣

∣

∣

∣

= |5 · 2 − 4 · 1| = |10 − 4| = 6

areaenheter. MatrisenA har determinant3 och därmed förstoras arean med en faktor
3 genomT , vilket vi också kan se genom att arean av paralellogrammenΩ ges av
determinanten

∣

∣

∣

∣

det

(

3 4
−2 −2

)∣

∣

∣

∣

= |3 · (−2) − 4 · (−2)| = | − 6 + 8| = 2.

�

Svar:
a) OmrådetΩ är parallellogrammen med hörn i(0, 0), (3,−2), (4,−2) och(7,−4).
b) OmrådetT (Ω) har area6 areaenheter och är tre gånger så stort somΩ i och med att

determinanten förA är 3.
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(3) Den vinkelräta projektionen på planet som ges av ekvationenx−2y +3z = 0 är en linjär
avbildning och kan därmed beskrivas med hjälp av en matris. Bestäm standardmatrisen
för denna projektion genom att se på hur den verkar på standardbasvektorerna. (4)

Lösning.En normalvektor för planet ges av koefficienterna i ekvationen och vi fårn =
(1,−2, 3). Vi kan projicera de tre standardbasvektorerna på planet genom att dra bort
projektionen på normalen.

När vi projicerar på normalen får vi

Projn e1 =
e1 · n
n · n n =

(1, 0, 0)t · (1,−2, 3)t

(1,−2, 3)t · (1,−2, 3)t
(1,−2, 3)t =

1

14
(1,−2, 3)t

Projn e2 =
e2 · n
n · n n =

(0, 1, 0)t · (1,−2, 3)t

(1,−2, 3)t · (1,−2, 3)t
(1,−2, 3)t =

−2

14
(1,−2, 3)t

och

Projn e3 =
e3 · n
n · n n =

(0, 0, 1)t · (1,−2, 3)t

(1,−2, 3)t · (1,−2, 3)t
(1,−2, 3)t =

3

14
(1,−2, 3)t

Om vi nu låterT vara projektionen på planet får vi att

T (e1) = e1 − Projn e1 = (1, 0, 0)t − 1

14
(1,−2, 3)t =

1

14
(13, 2,−3)t

T (e2) = e2 − Projn e2 = (0, 1, 0)t − −2

14
(1,−2, 3)t =

1

14
(2, 10, 6)t

och

T (e3) = e3 − Projn e3 = (0, 0, 1)t − 3

14
(1,−2, 3)t =

1

14
(−3, 6, 5)t.

Alltså ges matrisen för projektionen av

A =
1

14





13 2 −3
2 10 6

−3 6 5



 .

�

Svar: Matrisen för projektionen ges avA = 1
14





13 2 −3
2 10 6

−3 6 5



.
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DEL B

(4) Betrakta matrisen

A =









−1 2 1 8
−2 4 −2 0
−1 2 2 12
−2 4 2 16









(a) Bestäm en bas för radrummet1 till A med hjälp av Gausselimination. (3)
(b) Använd relationen mellan dimensionerna för radrum och nollrum2 för att med hjälp

av resultatet från 4a också bestämma dimensionen av nollrummet tillA. (1)

Lösning. a) När vi utför radoperationer i Gausselimination ändras inte radrummet i
matrisen. När vi väl har kommit till trappstegsform vet viatt de nollskilda raderna
är linjärt oberoende och de utgör dämed en bas för radrummet.









−1 2 1 8
−2 4 −2 0
−1 2 2 12
−2 4 2 16









∼









−r1

r2 − 2r1

r3 − r1

r4 − 2r1









∼









1 −2 −1 −8
0 0 −4 −16
0 0 1 4
0 0 0 0









∼









r1

−1
4
r2

r3 + 1
4
r2

r4









∼









1 −2 −1 −8
0 0 1 4
0 0 0 0
0 0 0 0









Därmed utgör de två vektorerna(1,−2,−1,−8) och(0, 0, 1, 4) en bas för nollrum-
met till A.

b) Summan av dimensionerna av nollrum och radrum är lika medantalet kolonner, ef-
tersom nollrummets dimension ges av antalet kolonner som saknar ledande ettor i
trappstegsformen. Eftersom radrummet har dimension2 får vi därmed att nollrum-
met dimension4 − 2 = 2.

�

Svar:
a) En bas för radrummet ges av vektorerna(1,−2,−1,−8) och(0, 0, 1, 4).
b) Nollrummets dimension är2.

1Radrummet är det delrum som spänns upp av radvektorerna i matrisen.
2Nollrummet till A är lösningsmängden till ekvationenAx = 0.
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(5) En triangulär skärm ska sättas upp i ett hörn av ett rum där väggar och tak är vinkelräta
mot varandra. Använd vektorprodukten3 för att bestämma ett uttryck för skärmens area
om skärmens tre hörnpunkter har avstånda cm,b cm, respektivec cm från hörnet. (4)

FIGUR 3. Skärmens placering vid taket i ett av rummets hörn.

Lösning.Vi inför ett rätvinkligt koordinatsystem med rummets hörn som origo och de
positiva axlarna utmed skärninge av väggar och tak. Därmed får vi att skärmens hörnpunkter
får koordinater(a, 0, 0), (0, b, 0) och (0, 0, c). För att beräkna skärmens area kan vi
använda vektorprodukten eftersom längden av vektornu × v är arean av den parallel-
logram som spänns upp avu ochv. Triangelns area blir hälften av parallellogrammens
area.

Vi kan beräkna vektorer utefter triangelns sidor som

u = (0, b, 0) − (a, 0, 0) = (−a, b, 0)

och
v = (0, 0, c) − (a, 0, 0) = (−a, 0, b).

Vi beräknar kryssprodukten som

u × v = (−a, b, 0) × (−a, 0, c)
= (b · c − 0 · 0, 0 · (−a) − (−a) · c, (−a) · 0 − b · (−a))
= (bc, ac, ab).

Det är längden av denna vektor som ger arean av parallellogrammen och vi får därmed
att triangelns area är

1

2
|u × v| cm2 = |1

2
|(bc, ac, ab)| cm2 =

1

2

√
b2c2 + a2c2 + a2b2 cm2.

�

Svar: Skärmens area är1
2

√
b2c2 + a2c2 + a2b2 cm2.

3Vektorprodukten kallas också för kryssprodukt.
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(6) (a) Förklara varför det i allmänhet är enkelt att bestämma egenvärdena för övertriangulära
matriser. (1)

(b) Bestäm om möjligt en basbytesmatrisP som diagonaliserar den övertriangulära ma-
trisen

A =





1 2 3
0 4 5
0 0 6



 .

(3)

Lösning. a) I och med att determinanten för en övertriangulär matris ges av produkten
av diagonalelementen kommer det karaktäristiska polynomet,det(A − λI) att vara
lika med(a11 − λ)(a22 − λ) · · · (ann − λ) om A är en övertriangulärn × n-matris.
Egenvärdena som är nollställena till det karaktäristiska polynomet blir därmed lika
med diagonalelementen,a11, a22, . . . , ann.

b) För att finna en basbytesmatris som diagonaliserarP behöver vi finna egenvektorer-
na. Vi har redan hittat egenvärdena som enligt del a) är lika med1, 4 och6.
För att finna egenvektorerna behöver vi lösa de homogena ekvationssystemen som
svarar mot(A − λI)x = 0 för dessa egenvärden.
Vi börjar medλ = 1 och får med Gausselimination





0 2 3 0
0 3 5 0
0 0 5 0



 ∼





1
2
r1

r2 − 3
2
r1

r3



 ∼





0 1 3
2

0
0 0 1

2
0

0 0 5 0



 ∼





r1

2r2

r3 − 10r2



 ∼





0 1 3
2

0
0 0 1 0
0 0 0 0





vilket ger lösningen(x1, x2, x3) = t(1, 0, 0) eftersomx2 = x3 = 0 och vi kan låte
x1 = t för en reell parametert.
Förλ = 4 får vi





−3 2 3 0
0 0 5 0
0 0 2 0



 ∼





−1
3
r1

1
5
r2

r3 − 2
5
r2



 ∼





1 −2
3

−1 0
0 0 1 0
0 0 0 0





och lösningen ges av(x1, x2, x3) = t(2, 3, 0) eftersomx3 = 0 och vi kan låtax2 = 3t
för en reell parametert.
Till slut får vi för λ = 6





−5 2 3 0
0 −2 5 0
0 0 0 0



 ∼





−1
5
r1

−1
2
r2

r3



 ∼





1 −2
5

−3
5

0
0 1 −5

2
0

0 0 0 0



 ∼





r1 + 2
5
r2

r2

r3



 ∼





1 0 −8
5

0
0 1 −5

2
0

0 0 0 0





och lösningen ges av(x1, x2, x3) = t(16, 25, 10) eftersom vi kan låtax3 = 10t för
en reell parametert.
Vi kan få den sökta basbytesmatrisen genom att välja egenvektorerna som kolonner
och kan därmed välja
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P =





1 2 16
0 3 25
0 0 10



 .

Det går att kontrollera att räkningarna stämmer genom att inverteraP och beräkna
produktenP−1AP och se att det blir en diagonalmatris med elementen1, 4 och6 på
diagonalen.
Vi får

P−1 =
1

30





30 −20 2
0 10 −25
0 0 3



 =





1 −2
3

1
15

0 1
3

−5
6

0 0 1
10





P−1AP =





1 −2
3

1
15

0 1
3

−5
6

0 0 1
10









1 2 3
0 4 5
0 0 6









1 2 16
0 3 25
0 0 10



 =





1 0 0
0 4 0
0 0 6





�

Svar:

b) MatrisenP =





1 2 16
0 3 25
0 0 10



 är en basbytesmatris som diagonaliserarA.

Var god v̈and!
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DEL C

(7) När vi med den minsta-kvadratmetoden försöker hittaden ellips med ekvation

ax2 + bxy + cy2 = 1

som bäst passar till punkterna(2, 2), (−2, 1), (−1,−2) och(2,−1) leds vi till ekvationen

(1)





49 2 28
2 28 20

28 20 34









a
b
c



 =





13
2

10





som har lösningena = 0,10, b = −0,15 ochc = 0,30.
(a) Utför beräkningarna som leder fram till ekvationen (2). (Gausseliminationen av ek-

vationssystemet (2) behöver inte utföras.) (3)
(b) Förklara vad som menas med att lösningena = 0,10, b = −0,15 och c = 0,30 är

bäst iminsta-kvadratmening. (1)

Lösning. a) Vi ställer först upp de ekvationer som skulle vara uppfyllda om alla fyra
punkter låg på ellipsen. Då skulle vi ha















a · 22 + b · 2 · 2 + c · 22 = 1,
a · (−2)2 + b · (−2) · 1 + c · 12 = 1,
a · (−1)2 + b · (−1) · (−2) + c · (−2)2 = 1,

a · 22 + b · 2 · (−1) + c · (−1)2 = 1.

dvs uttryckt som matrisekvation








4 4 4
4 −2 1
1 2 4
4 −2 1













a
b
c



 =









1
1
1
1









.

Normalekvationen ges nu av





4 4 1 4
4 −2 2 −2
4 1 4 1













4 4 4
4 −2 1
1 2 4
4 −2 1













a
b
c



 =





4 4 1 4
4 −2 2 −2
4 1 4 1













1
1
1
1









.

dvs

(2)





49 2 28
2 28 20

28 20 34









a
b
c



 =





13
2

10




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b) Att lösningen är bäst iminsta-kvadratmeningbetyder att skillnaden mellan högerled
och vänsterled i den ursprungliga ekvationen är vinkelr¨at mot det rum som spänns
upp av kolonnerna. Därmed är längden av denna vektor så liten som möjligt, vilket
betyder att summan av kvadraterna av avvikelserna är så liten som möjligt. (I det
här fallet ligger de fyra punkterna på en ellips, så skillnaden mellan högerled och
vänsterled är(0, 0, 0, 0) när a = 0,1, b = −0,15 och c = 0,3 och summan av
kvadraterna är därmed också0.)

�
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(8) LåtQa vara den kvadratiska formen som ges av

Qa(x, y, z) = a(x2 + y2 + z2) + 2xy + 2yz

dära är en reell parameter.
(a) Bestäm för vilka värden på parameterna somQa är positivt definit.4 (3)
(b) Låta vara det minsta värdet för vilketQa är positivt semidefinit.5 Bestäm det största

värdeQa antar på enhetssfärenx2 + y2 + z2 = 1. (1)

Lösning. a) Den symmetriska matrisen svarar mot

Qa(x, y, z) = a(x2 + y2 + z2) + 2xy + 2yz

är

A =





a 1 0
1 a 1
0 1 a





För att se på omQa är positivt definit behöver vi se om alla egenvärden är positiva. Vi
får egenvärdena som lösningarna till den karaktäristiska ekvationendet(A − λI) =
0.

det





a − λ 1 0
1 a − λ 1
0 1 a − λ





= (a − λ) det

(

a − λ 1
1 a − λ

)

− det

(

1 1
0 a − λ

)

= (a − λ)((a − λ)2 − 1) − 1) = (a − λ)((a − λ)2 − 2)

Därmed har vi egenvärdenaλ = a, λ = a +
√

2 och λ = a −
√

2. Det minsta
egenvärdet ära −

√
2 och för att detta ska vara positivt krävs atta >

√
2.

b) Oma <
√

2 finns ett negativt egenvärde, såa =
√

2 är det minsta värde påa som
gör atta är positivt semidefinit. Vi har då att det största egenvärdet ärλ = 2

√
2

och det minstaλ =
√

2 −
√

2 = 0. Därmed gäller att0 ≤ Qa(x, y, z) ≤ 2
√

2 för
alla x, y, z medx2 + y2 + z2 = 1. Om vi har ordnat egenvärdena i storleksordning
λ1 ≤ λ2 ≤ λ3 får vi efter diagonalisering att

Qa(x, y, z) = λ1x
′2 + λ1y

′2 + λ3z
′2 ≤ λ3(x

′2 + y′2 + z′2) = λ3

för punkter på enhetssfären.
Det största värdet uppnås när(x, y, z) är en egenvektor med egenvärde2

√
2.

�

Svar:
a) Qa är positivt definit oma >

√
2.

b) Det största värdetQ√
2(x, y, z) antar på enhetssfären är2

√
2.

4Q ärpositivt definitomQ(x, y, z) > 0 för alla (x, y, z) 6= (0, 0, 0).
5Q ärpositivt semidefinitomQ(x, y, z) ≥ 0 för alla (x, y, z).
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(9) För varje naturligt taln ≥ 2 kan vi se på det delrumV avR
n som ges av lösningarna till

ekvationenx1 + x2 + · · ·+ xn = 0.
(a) Visa att vektorernaf1 = e1 − e2, f2 = e2 − e3, . . . , fn−1 = en−1 − en utgör en bas

för V ome1, e2, . . . , en är standardbasvektorerna förR
n. (2)

(b) Använd Gram-Schmidts metod för att utifrån den givnabasen förV skapa en orto-
gonal bas förV med avseende på den euklidiska inre produkten påR

n. (2)

Lösning. a) För att bestämma dimensionen förV kan vi se att matrisen som beskriver
ekvationssystemet förV består av en enda nollskild rad. Detta betyder att radrummet
har dimension1 och eftersom antalet kolonner ärn kommer nollrummet, dvsV , att
ha dimensionn − 1.
Alla de n − 1 vektorernaf1, f2, . . . , fn−1 ligger i V eftersom de har en koordinat
som är1, en som är−1 och resten är noll.
Därmed återstår bara att visa attf1, f2, . . . , fn−1 är linjärt oberoende. Antag att
a1f1 + a2f2 + · · ·+ an−1fn−1 = 0. Vi får då att

0 = a1(e1 − e2) + a2(e2 − e3) + · · ·+ an−1(en−1 − en)
= a1e1 + (a2 − a1)e2 + · · ·+ (an−1 − an−2)en−1 − an−1en.

Eftersome1, e2, . . . , en utgör en bas förRn innebär detta att

a1 = a2 − a1 = · · · = an−1 − an−2 = an−1 = 0.

Den första ekvationen innebär atta1 = 0 och när vi sätter in detta i den andra får
vi a2 = 0. Till slut får vi att a1 = a2 = · · · = an−1 = 0 och vi drar slutsatsen att
f1, f2, . . . , fn−1 är linjärt oberoende och därmed bildar en bas förV .

b) Vi ska bygga upp en ortogonal bas förV som består av vektorerg1, g2, . . . , gn−1.
Det första steget är att låtag1 = f1 = e1 − e2. Vi bildar sedan nästa vektor genom
att taf2 oh dra bort projektionen avf2 påe1 och vi får då

g2 = f2 − Projg1
f2 = e2 − e3 − (e2−e3)·(e1−e2)

(e1−e2)·(e1−e2)
(e1 − e2)

= e2 − e3 − −1
2

(e1 − e2) = 1
2
e1 + 1

2
e2 − e3.

Vi kan gå vidare ett steg och får då eftersomf3 = e3 − e4 att f3 · g1 = 0 och
f3 · g2 = −1. Vidare ärg2 · g2 = 1

4
+ 1

4
+ 1 = 3

2
vilket ger

g3 = f3 − Projg1
f3 − Projg2

f3 = f3 − −1
3/2

g2

= e3 − e4 + 2
3
(1

2
e1 + 1

2
e2 − e3)

= 1
3
e1 + 1

3
e2 + 1

3
e3 − e4

Vi kan nu ana ett mönster och kan försöka visa att

gi =
1

i
e1 +

1

i
e2 + · · ·+ 1

i
ei − ei+1, för i = 1, 2, . . . , n − 1.

Vi ser att en vektorv = (x1, x2, . . . , xn) är ortogonal motfi precis omv · fi =
xi − xi+1 = 0, dvs omi-koordinaten är lika med(i + 1)-koordinaten. Därmed
får vi att vektorngi som ska vara ortogonal motWi = span{g1, g2, . . . , gi−1} =
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span{f1, f2, . . . , fi−1} måste ha alla de förstai koorinaterna lika. Den(i + 1)-
koordinaten måste vara lika med(i + 1)-koordinaten förfi eftersom alla vektorer i
Wi har(i + 1)-koordinat noll. Därmed ser vi att

gi = k(e1 + e2 + · · ·+ ei) − ei+1

för något talk. Eftersomgi ska ligga i delrummetV måste summan av koordinaterna
vara noll, vilket gerk · i − 1 = 0, dvsk = 1/i. Alltså har vi visat att

gi =
1

i
e1 +

1

i
e2 + · · ·+ 1

i
ei − ei+1, för i = 1, 2, . . . , n − 1.

�

Svar:
b) Den ortogonala basG = {g1, g2, . . . , gn−1} som fås via Gram-Schmidt metod ges

avgi = 1
i
e1 + 1

i
e2 + · · ·+ 1

i
ei − ei+1 för i = 1, 2, . . . , n − 1.


