Doctoral programme — Physics

The programme description was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.

Programme description (KTHFYS)

Programme name
Physics (Fysik)

Subject area
Physics is the science that describes the structure of matter, the interaction and relationships between matter and energy, and the basic processes of nature. The Doctoral Program in Physics includes a number of different research areas in physics, ranging from fundamental and theoretical research within modern physics, applied and strategic research in nuclear technology, to interdisciplinary research in biological and biomedical physics. The doctoral level education in Biological and biomedical physics is highly interdisciplinary and includes scientific studies in physics at the boundaries between biology, chemistry and medicine.

The structure of the program is represented by six broad research areas, or tracks, and comprises the study subjects Physics and Biological Physics.

Regarding the subject study plans for a Doctorate or Licentiate in Physics or Biological Physics, see appendix 1 and 2.

The doctoral programme’s overall purpose and learning outcomes

The aim of the Doctoral Program in Physics is to offer an attractive, internationally acknowledged high quality third level education that will prepare the students for their future roles in society by:

- offering outstanding research and high quality supervision,
- offering a comprehensive course package that is quality assured and given regularly,
- creating a strong unity among the students,
- increasing the student influence during the education,
- working actively for gender equality, diversity and equal treatment,
- following up, evaluate and develop the handling of individual study plans, and by
- evaluating and developing the doctoral program on a regular basis.

The ambition is that the students after the education within the Doctoral Program in Physics will be well prepared for their roles in the society, both nationally and internationally.

Furthermore, the ambition with the third cycle program is that the students will become independent, well-educated researchers. After completion of their studies, students should be able to:

- describe and explain theories and empirical results within the area in question,
- formulate specific research questions within the area in question,
- use scientific methods and develop new knowledge through their own scientific studies,
- produce critical analyses and evaluate methods applied and results from their own and others' scientific studies,
present and discuss research results in the scientific community, and identify needs for new knowledge and have the knowledge to initiate and lead research.

The doctoral programme’s size and recruitment

Within the program's six research areas there are educational opportunities for 150 to 200 students. The third level education is typically conducted within one of the research groups involved in the program where the student is supervised by one of the program's principal supervisors, as well as other supervisors active in the research area. More than 100 supervisors are involved in the program, including approximately 70 principal supervisors. A brief description of the current research activities within the research groups is presented in the subject study plans, see appendix 1 (Physics) and appendix 2 (Biological physics). A list with the principal supervisors involved in the program, with indication of their research areas, is found in appendix 3.

The Doctoral Program in Physics has a strong international character. Besides students with previous education at KTH, or other Swedish universities, a large number of the students have an international background with a wide geographical distribution.

The program's research specializations represent a natural third level education, in line with Bologna, for many international Masters Programs now offered at KTH, e.g., Engineering Physics with its 5 different specializations, as well as Nanotechnology, Nuclear Energy and Photonics. For the specialization Biological and biomedical physics, the students’ background will depend more on the specific research project that is offered and the special competence that is sought for. Examples of Masters programs at KTH, which may form the base for further studies within the Doctoral Program in Physics, could be: Computational and Systems Biology, Medical Imaging, Medical Technology, Molecular Science and Technology, or Medical Biotechnology. In the specialization Biological and medical physics there is a strong co-operation with Karolinska Institutet, and students with a medical training may, in some cases, be accepted for recruitment to the program.

Recruitment is made by announcement at specific times during the year, and follows KTH regulations. For current announcements, see Vacancies at KTH (www.kth.se). The eligibility requirements for the program are specified in the subject study plans for Physics and Biological Physics. Higher requirements may apply, depending on the type of research and specialization, and will then be described in the announcement. The student is expected to be able to read and write scientific English and to be able to speak English without difficulty.

Funding

Student funding may differ between the various research areas and research groups but apart from faculty resources, funding is mainly obtained through external financing. Some examples of funding agencies are:

- The Swedish Research Council (VR)
- VR Linné
- Vinnova
- The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)
- Swedish Foundation for Strategic Research (SSF)
- Department of energy (DOE), USA
- Swedish Energy Agency (STEM)
- Cancer Foundation
- Swedish Nuclear Fuel and Waste Management Company (SKB)
- Swedish Centre for Nuclear Technology (SKC)
- Scholarship from, e.g., China, Pakistan
- Swedish National Space Board
- Göran Gustafsson Foundation
- STandUP
- Several EU projects, e.g.,
 - Erasmus Mundus
 - MIRSURG
Courses

The courses within the doctoral programme are all offered within a third-cycle subject and are therefore presented in the study plan for the subject.

Quality enhancement activities

Within the Doctoral Program in Physics we aim at continuous development and quality improvement through regular evaluation and development activities. Besides improving the quality in accordance with the KTH central guidelines and regulations, the evaluation and development activities are primarily focused on the following areas:

- Individual study plan and supervision
- Courses
- Thesis
- Thesis defense and post-review procedure
- Gender equality, diversity, and equal treatment issues
- Student influence and networking among students
- The program objectives in relation to the above specified areas

National and international network

The research groups involved in the Doctoral Program in Physics have together a very extensive national and international network with different forms of co-operation and exchange with universities and research centers around the world. Depending on the situation, the students are encouraged to locate part of their research training abroad through international research visits. Currently agreements which can lead to a joint degree exist with the University of Iceland and a double diploma agreement with the University of Jyväskylä (Finland).

A Physics PhD student group consisting of students within the different specializations represents a very important part of the Doctoral Program in Physics. The student group has an active influence in the doctoral program with a distinct program oriented role, e.g., in the quality and development activities, and play a central role for the students networking and the social study environment within the program.

The above is enumerated and defined in appendix 3.

Further instructions for registration

Appendixes

Appendix 1.1: Study plan for third-cycle subject Biological physics (BIOLFYS).

Appendix 1.2: Study plan for third-cycle subject Physics (FYSIK).

Appendix 2: List containing names and subject areas of supervisors within the programme

Appendix 3: Presentation of the programme’s national and international network
Doctoral programme — Physics

Appendix 1.1: Study plan for third-cycle subject Biological physics (BIOLFYS).

The subject plan was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.

Subject title

Biological physics (Biologisk fysik)

Subject description and programme outcomes

Scientific field

The third level education on the subject Biological Physics is highly multi-disciplinary and includes scientific studies in physics on the boundaries between biology, chemistry and medicine. The aim of the third level education in Biological Physics is to provide deeper knowledge in some of the main areas of Physics, and further in-depth knowledge in one of the fields in Biological Physics that are represented within the Doctoral Program in Physics at KTH.

Due to the highly interdisciplinary nature of research conducted within the Doctoral Program in Physics, the third level education includes the subjects Physics and Biological Physics. For students in the field of physics, the doctoral education in the subject Physics is recommended.

The goal is that the students after completing the doctoral education will be well prepared for their future roles in society, both nationally and internationally.

Furthermore, the goal of the doctoral level education is that the Ph.D. students will become independent and well-educated scientists and after completion of the education will be able to:

- describe and explain theories and empirical results within the area in question
- formulate specific research questions within the area in question
- use scientific methods and develop new knowledge through their own scientific studies
- produce critical analyses and evaluate methods applied and results from their own and others' scientific studies
- present and discuss research results in the scientific community
- present research in a pedagogical manner outside the scientific community and in an educational context
- assess ethical aspects of research within the area in question and act on that basis, and
- identify needs for new knowledge and have the knowledge to initiate and lead research.

Third-cycle studies must also endeavor to ensure that doctoral students will have the ability, after completing the studies, to:

- take part in multi-disciplinary scientific cooperation within the area in question, and
- analyze the role of research in the development of society.

Description of possible specialisation

The subject has no specialisations.
Specification of how the programme outcomes are to be achieved

Current research

Biological physics is an interdisciplinary research area, where activity is based on close collaboration between physicists, biologists, bio-technicians, chemists and medical professionals. The intention is to develop and use physical methods and models for understanding biological phenomena and processes in particular on the molecular and cellular level, or the development of physical methods and technologies within healthcare and medical research. The activities are in part fundamental research, but also aim to develop procedures, including diagnostics and drug development. The different research areas represented in biological physics is:

Computational Biological Physics

The area includes the study of biological problems with the analytical and computational methods from physics, as well as physical problems of immediate or potential biological interest. The research area differs from bioinformatics as emphasis is placed in the physical issues and/or dynamic models.

Biomedical and X-Ray Physics

Mainly experimental research in applied physics is carried out, aimed towards the development of relevant biomedical instrumentation. Development of new types of X-ray sources and X-ray optics and their use for microscopy, medical imaging, bio-analysis as well as materials physics. New optical and acoustic methods for biomedical applications, such as ultrasound-tweezers for cell biology and visual optics for improved peripheral vision.

Medical imaging

Research on technical and physical methods in healthcare and medical research in close collaboration between physicians, physicists and engineers. The subject is highly multidisciplinary and results from almost all physical and technical disciplines used. For successful research, a good understanding of the human biology and physiology, the physicians techniques and methods, and physical principles is required.

Biomolecular Physics

Research into the use and development of biophysical methods to study the function of biomolecules based on their occurrence, structure, dynamics and interactions. The focus is on development of fluorescence-based methods for single molecule- and fluctuation-spectroscopy and its applications for fundamental biomolecular studies, where the possibility of being able to study single molecules can be utilized, as well as for applications in ultra-sensitive medical diagnostic and screening procedures.

Cell Physics

Experimental and theoretical studies on the functions of biological cells, at the boundary between biology and physics. In particular technology development of microscopic methods and techniques, with a focus on studies of individual proteins and their integrated impact on the cell’s interaction with the environment. Main themes of research are cellular transport mechanisms and signaling pathways.

Theoretical Biological Physics

Theoretical Biological Physics is the application of theoretical methods from physics to describe biological processes at the molecular level, with emphasis especially from statistical mechanics. The research involves analysis of scientific problems and the development of mathematical models within molecular and cell biology.

Programme structure

The education on the doctoral level consists of course-part and a thesis-part and can be completed with a doctorate or licentiate degree. Doctoral degree is equivalent to four years of study and a licentiate degree two years of study. During the education the student is supervised by one main supervisor and one or more assistant supervisors. The main
The subject plan was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.

The coursework may consist of lectures, literature studies, problem-solving, and active participation in seminars, and must include at least 30 credits for a licentiate degree and 60 credits for a doctorate degree.

During the education, students are encouraged to actively participate in research seminars within the Doctoral Program in Physics. For international experience the doctoral student should, if given the opportunity, relocate part of their research studies abroad through international research collaboration.

If the student teach or perform other departmental duties, the licentiate degree and the doctorate degree may in normal circumstances take up to 2.5 years or 5 years, respectively. When teaching at the first- or second-level, the students must have completed introductory courses in university pedagogy, or acquired corresponding knowledge.

Compulsory and recommended courses

The choice of courses to be included in the education should be based on student's prior knowledge, and the knowledge and skills considered necessary for the realization of the theses and dissertation work, and in order to achieve the program objectives.

Due to the range of research topics within the program, the inter- and multi-disciplinary nature of research activities, and that the third level education is highly individualized depending on the student's knowledge and required skills, there are no mandatory courses within the program. Consequently, within the Doctoral Program in Physics, the student's and supervisor's planning, design and monitoring of the individual study plan is of central importance for the education.

A large number of courses are offered within the Doctoral Program in Physics, but the student may, in consultation with their main supervisor also select other courses within or outside KTH in order to acquire the knowledge considered necessary for completing the thesis work and in order to reach the goals of the program.

The following courses are a selection of the courses taught within the program and can be seen as representative for Biological Physics within the Doctoral Program in Physics.

Recommended in-depth courses

- SK3511 Cellular Biophysics II 6.0 hp.
- SK3520 Experimental Methods in Molecular Biophysics 8.0 hp.
- SI3420 Membranes and Soft Matter 7.5 hp.
- SK2800 Laser Spectroscopy 8.0 hp.
- SK3400 Laser Physics 7.5 hp.
- SH3212 Photon Counting Systems in Medicine 12.0 hp.
- SI3430 Protein Physics 7.5 hp.
- SH2313 Medical 3D-imaging, Supplementary Course 2 3.0 hp.
- DD2398 Quantitative Systems Biology 7.5 hp.
- SK3500 Physics of Biomedical Microscopy 6.0 hp.
- SK2521 Fluorescence Spectroscopy for Biomolecular Studies 6.0 hp.
- SH2312 Medical 3D-imaging, Supplementary Course 1 3.0 hp.
- SK3410 Laser Physics 10.5 hp.
- SK3501 Physics of Biomedical Microscopy, Extended Course 7.5 hp.

Recommended research proficiency courses

- SK3330 Optical Design 6.0 hp.
- SH2007 Research Methodology in Physics 3.0 hp.
- SK3740 Introduction to Scanning Probe Microscopy 6.0 hp.
Recommended broad-based courses

- SH3211 Image Quality in Medicine 12.0 hp.
- SK3510 Cellular Biophysics I 8.0 hp.
- SK3550 X-ray Physics and Applications 6.0 hp.
- SK3540 Physics and Applications of Ultrasound 6.0 hp.
- SK3531 Biomedicine for Engineers 12.0 hp.

Other recommended courses

- LH200V Basic Communication and Teaching 3.0 hp.
- SI3000 History of Physics and Epistemology 5.0 hp.

Thesis

The aim of the education during the thesis-part is for the student to develop an ability to make independent contributions to research, as well as a capability for scientific collaboration, within as well as outside their own subject of study.

The thesis should include new research results which the student has prepared independently or in collaboration with others. The main scientific results should meet the quality requirements for publication in internationally recognized journals with peer review. The thesis is typically written as a collection of scientific articles with a specific written summary, a so-called compilation thesis. During the thesis work the student should therefore strive for international publication of the achieved research results. A licentiate thesis should include scientific results corresponding to at least two for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least one international conference. A doctorate thesis should include scientific results corresponding to at least four for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least two international conferences. The doctoral thesis and licentiate thesis should be written in English.

This thesis work is a mandatory part of the doctoral education to be defended at a public defense in accordance with internal regulations and guidelines that are specified for doctoral and licentiate degrees at KTH.

Entry requirements and selection

General and special admission requirements and prior knowledge

The general entry requirements follow the regulations specified by the Higher Education Ordinance, and local rules and regulations at KTH.

For special entry requirements to third level education within the Doctoral Program in Physics, the applicant must have:

1. fulfilled the general entry requirements within the area of Biology, Biomedicine or Chemistry, or
2. obtained a medical degree, or
3. otherwise acquired largely equivalent knowledge, either in or outside Sweden, within areas appropriate for the research area.

Doctoral students are expected to be able to read and write scientific English and to be able to speak English without difficulty. Higher eligibility requirements may apply, depending on the type of research and specialization, and will be outlined in the announcement of the vacant position.

Selection rules and procedures

Selection of applicants is based on the skills profile that is being sought for in the specific projects described in the announcement of the vacant position. Of great interest in the assessment are previous results from advanced courses at second-level, or independently conducted scientific work. Besides general and special eligibility, it is the degree of maturity and ability of independent judgment and critical analysis that provided the basis for the selection. The final choice is based on the student's assessed ability and capability to carry out and assimilate the whole third-level education.
For final admission to the Doctoral Program in Physics it is also required that:

- a supervisor is available and can be appointed to the student,
- there is funding for the student,
- an opening can be prepared within a research group, and
- equipment and infrastructure required for the completion education is available.

The programme’s degrees and examinations

Degree of Licentiate and Degree of Doctor (PhD)

The programme’s examinations

The courses at the doctoral level should include an oral examination or written knowledge test. The design of the examination should in special cases be such that the examiner can be satisfied that the student meets the learning outcomes. Decisions regarding accreditation of courses taken prior to admission to doctoral level education are made in accordance with internal regulations and guidelines that are specified for doctorate and licentiate degree at KTH.
Doctoral programme — Physics

Appendix 1.2: Study plan for third-cycle subject Physics (FYSIK).

The subject plan was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.

Subject title
Physics (Fysik)

Subject description and programme outcomes

Scientific field
Physics is the science that describes the structure of matter, the interaction and relationships between matter and energy, and the basic processes of nature. The Doctoral Program in Physics include a number of different research areas in physics, ranging from fundamental and theoretical research within modern physics, applied and strategic research in nuclear technology, to interdisciplinary research in biological and biomedical physics.

Description of possible specialisation

1. Atomic, Subatomic and Astrophysics
2. Theoretical Physics
3. Material and Nano Physics
4. Optics and Photonics
5. Biological and Biomedical Physics
6. Nuclear Engineering

Specification of how the programme outcomes are to be achieved

The aim of the doctoral level education in Physics is to provide deeper knowledge in some of the main areas of Physics, and further in-depth knowledge in one of the fields in Physics that are represented within the Doctoral Program in Physics at KTH.

The goal is that the students after completing the doctoral education will be well prepared for their future roles in society, both nationally and internationally.

Furthermore, the goal of the doctoral level education is that the Ph.D. students will become independent and well-educated scientists that after completion of the education should have the ability to:

- describe and explain theories and empirical results within the area in question
- formulate specific research questions within the area in question
- use scientific methods and develop new knowledge through their own scientific studies
- produce critical analyses and evaluate methods applied and results from their own and others' scientific studies
- present and discuss research results in the scientific community
- present research in a pedagogical manner outside the scientific community and in an educational context
- assess ethical aspects of research within the area in question and act on that basis, and
- identify needs for new knowledge and have the knowledge to initiate and lead research

Third-cycle studies must also endeavor to ensure that doctoral students will have the ability, after completing the studies, to:
• take part in multi-disciplinary scientific cooperation within the area in question, and
• analyze the role of research in the development of society

Atomic, Subatomic and Astrophysics

Description of the specialisation

Current research

Nuclear Physics

The research focuses on experimental and theoretical research on the atomic nucleus and the multifaceted interaction between nucleons. The experimental research is conducted at international accelerator facilities, with the use of large gamma-ray and particle detector system. Detector development is conducted in strategic research projects, such as Advanced Gamma Tracking Array (AGATA), and for applications in medical technology.

Particle and Astroparticle Physics

Research into particle physics is focused on studies of high-energy collisions, especially at CERN's Large Hadron Collider, to search for signs of new physics such as supersymmetry which could explain the universe's dark matter, and the development of new instrumentation including future upgrades of existing experiments. Astroparticle Physics is focused on studies of X-rays, gamma and charged cosmic rays in which the basic research questions concerning particle acceleration and radiation processes in cosmic plasmas, in our galaxy and around compact objects. Research directed specifically against that contribute to the understanding of dark matter, gamma-ray objects, the origin of cosmic rays and the emission mechanisms of compact stellar objects. The research includes design and development of strategic satellite- and balloon-borne instrumentation as well as analysis and astrophysical interpretation of the data obtained with these instruments.

Applied Atomic and Molecular Physics

Using techniques from atomic and molecular physics the research is focused on the development of new applications, mainly in fusion plasma diagnostics. The aim is to gain knowledge of the hot fusion plasma properties with these new tools. We are also studying basic atomic and molecular processes with use of synchrotron radiation as excitation source.

Programme structure

The education on the doctoral level consists of a course-part and a thesis-part and can be completed with a doctorate or licentiate degree. The doctoral degree is equivalent to four years of study and a licentiate degree to two years of study. During the education the student is supervised by one main supervisor and one or more assistant supervisors. The main supervisor is appointed in connection with admission and is, together with the student, responsible for that course studies and the dissertation work is progressing as planned. In connection with the admission an individual study plan has to be submitted according to the internal regulations and guidelines at KTH. The individual plan must be updated annually.

The coursework may consist of lectures, literature studies, problem-solving, and active participation in seminars, and must include at least 30 credits for a licentiate degree and 60 credits for a doctorate degree.

During the education, students are encouraged to actively participate in research seminars within the Doctoral Program in Physics. For international experience the doctoral student should, if given the opportunity, relocate part of their research studies abroad through international research collaboration.

If the student teaches or performs other departmental duties, the licentiate degree and the doctorate degree may in normal circumstances take up to 2.5 years or 5 years, respectively. When teaching at the first- or second-level, the students must have completed introductory courses in university pedagogy, or acquired corresponding knowledge.
Compulsory and recommended courses

The choice of courses to be included in the education should be based on student’s prior knowledge, and the knowledge and skills considered necessary for the realization of the theses and dissertation work, and in order to achieve the program objectives.

Due to the range of research topics within the program, the inter- and multi-disciplinary nature of research activities, and that the third level education is highly individualized depending on the student's knowledge and required skills, there are no mandatory courses within the program. Consequently, within the Doctoral Program in Physics, the student's and supervisor's planning, design and monitoring of the individual study plan is of central importance for the education.

A large number of courses are offered within the Doctoral Program in Physics, but the student may, in consultation with their main supervisor also select other courses within or outside KTH in order to acquire the knowledge considered necessary for completing the thesis work the dissertation.

Doctoral students with an educational background other than physics should take a complementary course in Modern Physics, comprising of at least 10 credits, in order to gain deeper knowledge in some of the main areas of Physics. If the student has previously taken courses with corresponding content in previous education, no further complementary courses are necessary.

An introductory course in university pedagogy is a requirement when teaching at the first- or second-level levels during the education.

The following courses are a selection of the courses taught within the program and can be seen as representative courses of the Doctoral Program in Physics and the different research area.

Thesis

The aim of the education during the thesis-part is for the student to develop an ability to make independent contributions to research, as well as a capability for scientific collaboration, within as well as outside their own subject of study. The thesis should include new research results which the student has prepared independently or in collaboration with others. The main scientific results should meet the quality requirements for publication in internationally recognized journals with peer review. The thesis is typically written as a collection of scientific articles with a specific written summary, a so-called compilation thesis. During the thesis work the student should therefore strive for international publication of the achieved research results. A licentiate thesis should include scientific results corresponding to at least two for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least one international conference. A doctorate thesis should include scientific results corresponding to at least four for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least two international conferences. The doctoral thesis and licentiate thesis should be written in English.

This thesis work is a mandatory part of the doctoral education to be defended at a public defense in accordance with internal regulations and guidelines that are specified for doctoral and licentiate degrees at KTH.

Theoretical Physics

Description of the specialisation

Current research

Condensed Matter Theory
Development and application of basic condensed matter theories, especially towards the border area with modern statistical physics, including the study of phase transitions, critical phenomena and strongly correlated systems. The research aims to provide a basic understanding of complex phenomena. Idealized models are studied partly using advanced mathematical analysis, and computer simulations. Connection to experimental and possible technological applications are important.

Mathematical Physics

Theoretical research on the smallest subatomic particles and their interactions. Mathematical problems related to the design of quantum mechanics and quantum field theory models for the above purpose. Research in this area is closely linked to current research in mathematics, especially differential geometry, topology and group theory.

Statistical Physics

Within statistical physics basic theoretical methods and computer simulation methods are developed and used in a very wide field of research ranging from fundamental problems to various applications and interdisciplinary collaborations. The research carried out in close collaboration with experiments. Problem areas include classical and quantum phase transitions, exotic quantum fluids, complex systems, nano-systems, disordered systems, soft matter and biological systems.

Theoretical Biological Physics

Theoretical Biological Physics is the application of methods in theoretical physics to describe biological processes at the molecular level. In particular, emphasis is place on statistical mechanics. The research involves analysis of research questions and development of mathematical models in molecular and cell biology. Theoretical Biological Physics is an interdisciplinary research area where a physical, chemical and biological basis is used when seeking to understand the processes that form the basis of all life.

Theoretical Particle Physics

Research in theoretical particle physics aims to find a consistent description of the inner structure. Both phenomenological methods and advanced field-theory calculations are used to describe particles of the different properties and types of interactions, with which one hopes to be able to unite in a unified theory in the future. Recently, this research has been brought closer to astrophysics and cosmology.

Programme structure

The education on the doctoral level consists of a course-part and a thesis-part and can be completed with a doctorate or licentiate degree. The doctoral degree is equivalent to four years of study and a licentiate degree to two years of study. During the education the student is supervised by one main supervisor and one or more assistant supervisors. The main supervisor is appointed in connection with admission and is, together with the student, responsible for that course studies and the dissertation work is progressing as planned. In connection with the admission an individual study plan has to be submitted according to the internal regulations and guidelines at KTH. The individual plan must be updated annually.

The coursework may consist of lectures, literature studies, problem-solving, and active participation in seminars, and must include at least 30 credits for a licentiate degree and 60 credits for a doctorate degree.

During the education, students are encouraged to actively participate in research seminars within the Doctoral Program in Physics. For international experience the doctoral student should, if given the opportunity, relocate part of their research studies abroad through international research collaboration.

If the student teaches or performs other departmental duties, the licentiate degree and the doctorate degree may in normal circumstances take up to 2.5 years or 5 years, respectively. When teaching at the first- or second-level, the students must have completed introductory courses in university pedagogy, or acquired corresponding knowledge.
Compulsory and recommended courses

The choice of courses to be included in the education should be based on student’s prior knowledge, and the knowledge and skills considered necessary for the realization of the theses and dissertation work, and in order to achieve the program objectives.

Due to the range of research topics within the program, the inter- and multi-disciplinary nature of research activities, and that the third level education is highly individualized depending on the student’s knowledge and required skills, there are no mandatory courses within the program. Consequently, within the Doctoral Program in Physics, the student’s and supervisor’s planning, design and monitoring of the individual study plan is of central importance for the education.

A large number of courses are offered within the Doctoral Program in Physics, but the student may, in consultation with their main supervisor also select other courses within or outside KTH in order to acquire the knowledge considered necessary for completing the thesis work the dissertation.

Doctoral students with an educational background other than physics should take a complementary course in Modern Physics, comprising of at least 10 credits, in order to gain deeper knowledge in some of the main areas of Physics. If the student has previously taken courses with corresponding content in previous education, no further complementary courses are necessary.

An introductory course in university pedagogy is a requirement when teaching at the first- or second-level levels during the education.

The following courses are a selection of the courses taught within the program and can be seen as representative courses of the Doctoral Program in Physics and the different research area.

Thesis

The aim of the education during the thesis-part is for the student to develop an ability to make independent contributions to research, as well as a capability for scientific collaboration, within as well as outside their own subject of study. The thesis should include new research results which the student has prepared independently or in collaboration with others. The main scientific results should meet the quality requirements for publication in internationally recognized journals with peer review. The thesis is typically written as a collection of scientific articles with a specific written summary, a so-called compilation thesis. During the thesis work the student should therefore strive for international publication of the achieved research results. A licentiate thesis should include scientific results corresponding to at least two for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least one international conference. A doctorate thesis should include scientific results corresponding to at least four for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least two international conferences. The doctoral thesis and licentiate thesis should be written in English.

This thesis work is a mandatory part of the doctoral education to be defended at a public defense in accordance with internal regulations and guidelines that are specified for doctoral and licentiate degrees at KTH.

Material and Nano Physics

Description of the specialisation

Current research

Functional Materials

Research is conducted within development, production and characterization of nanomaterials and composites in terms of how to influence material properties by controlling the dimensions at the nanometer level. Applications include fields such as energy, biomedicine, optics and photonics.
The research in semiconductor materials includes the design of advanced photonic materials, their characterization, process development and component. Photonic crystals, nanostructured surfaces, nanowires, quantum dots, methods for characterizing nanostructures, monolithic integrated photonic components on indium phosphide, hetero-epitaxial III-V semiconductors on silicon for large-scale integration, and silicon photonics are some of the main activities with applications in communications, sensors and energy.

Material Physics

Research is primarily conducted in four areas: (1) Nanostructures and their applications, where mainly nanostructures in silicon are studied in terms of both fundamental aspects as well as applications in areas such as biosensors and imaging detectors. (2) Strongly correlated systems, where basic research in mainly conducted within high temperature superconductors, heavy fermion systems, and topological insulators. (3) Spintronics, where research is focused on spin electronic components and especially spin torsion oscillators. (4) Finally, surface physics, with emphasis on surface reconstructions and surface reactions. The research has relevance to the development of so-called Gretzel solar cells.

Nanostructure Physics

Mainly electronic transport properties of nanostructures. Mesoscopic phenomena and quantum phenomena that occur in structures no larger than atoms, but smaller than those of so-called bulk materials. E-beam lithography and low-temperature equipment is used in the manufacture and characterization of structures. The production and experimental study of nanostructures, and modeling of the measurement results.

Programme structure

The education on the doctoral level consists of a course-part and a thesis-part and can be completed with a doctorate or licentiate degree. The doctoral degree is equivalent to four years of study and a licentiate degree to two years of study. During the education the student is supervised by one main supervisor and one or more assistant supervisors. The main supervisor is appointed in connection with admission and is, together with the student, responsible for that course studies and the dissertation work is progressing as planned. In connection with the admission an individual study plan has to be submitted according to the internal regulations and guidelines at KTH. The individual plan must be updated annually.

The coursework may consist of lectures, literature studies, problem-solving, and active participation in seminars, and must include at least 30 credits for a licentiate degree and 60 credits for a doctorate degree.

During the education, students are encouraged to actively participate in research seminars within the Doctoral Program in Physics. For international experience the doctoral student should, if given the opportunity, relocate part of their research studies abroad through international research collaboration.

If the student teaches or performs other departmental duties, the licentiate degree and the doctorate degree may in normal circumstances take up to 2.5 years or 5 years, respectively. When teaching at the first- or second-level, the students must have completed introductory courses in university pedagogy, or acquired corresponding knowledge.

Compulsory and recommended courses

The choice of courses to be included in the education should be based on student's prior knowledge, and the knowledge and skills considered necessary for the realization of the theses and dissertation work, and in order to achieve the program objectives.

Due to the range of research topics within the program, the inter- and multi-disciplinary nature of research activities, and that the third level education is highly individualized depending on the student's knowledge and required skills, there are no mandatory courses within the program. Consequently, within the Doctoral Program in Physics, the student's and supervisor's planning, design and monitoring of the individual study plan is of central importance for the education.
A large number of courses are offered within the Doctoral Program in Physics, but the student may, in consultation with their main supervisor also select other courses within or outside KTH in order to acquire the knowledge considered necessary for completing the thesis work the dissertation.

Doctoral students with an educational background other than physics should take a complementary course in Modern Physics, comprising of at least 10 credits, in order to gain deeper knowledge in some of the main areas of Physics. If the student has previously taken courses with corresponding content in previous education, no further complementary courses are necessary.

An introductory course in university pedagogy is a requirement when teaching at the first- or second-level levels during the education.

The following courses are a selection of the courses taught within the program and can be seen as representative courses of the Doctoral Program in Physics and the different research area.

Thesis

The aim of the education during the thesis-part is for the student to develop an ability to make independent contributions to research, as well as a capability for scientific collaboration, within as well as outside their own subject of study. The thesis should include new research results which the student has prepared independently or in collaboration with others. The main scientific results should meet the quality requirements for publication in internationally recognized journals with peer review. The thesis is typically written as a collection of scientific articles with a specific written summary, a so-called compilation thesis. During the thesis work the student should therefore strive for international publication of the achieved research results. A licentiate thesis should include scientific results corresponding to at least two for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least one international conference. A doctorate thesis should include scientific results corresponding to at least four for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least two international conferences. The doctoral thesis and licentiate thesis should be written in English.

This thesis work is a mandatory part of the doctoral education to be defended at a public defense in accordance with internal regulations and guidelines that are specified for doctoral and licentiate degrees at KTH.

Optics and Photonics

Description of the specialisation

Current research

Photonics

The research includes three main areas: (1) Technology and component structures within integrated photonics and nanophotonics, with generic applications towards telecommunications, optical interconnect, sensors, lighting, energy and medicine. (2) Optical high-capacity transmission and (3) optical networks, where the first area is a base for the latter two. The research involves a mixture of applied and comparatively basic fundamental research, the former represented by, e.g., optical networks, and the latter by, e.g., the photonic properties of nanoparticles.

Quantum Electronics and Quantum Optics

Basic research on the fundamental properties of light, interaction between light and matter, and quantum mechanical information transfer (such as quantum cryptography) and quantum information processing. Generation and detection of single photon pulses and the application of these. Research on photons entanglement and its applications.

Laser Physics
Fundamental research on the interaction between light and matter, in the form of atoms, molecules and solids. The laser used in nonlinear spectroscopy and the study of time-dependent quantum phenomena. Principles of laser physics and quantum effects when the laser acts as oscillator and amplifier. The long-term goal is that part of the research results generated will have a practical impact, i.e., to develop the technology and materials for more efficient and better light sources.

Optics

Research is primarily conducted in two areas: (1) Electromagnetic optics and (2) spectroscopy in semiconductors. In both these areas the emphasis is on near-field optics and includes research on diffractive optics, micro-lasers, Raman lasers, plasmonics, ultrafast processes in semiconductors and their nanostructures.

Programme structure

The education on the doctoral level consists of a course-part and a thesis-part and can be completed with a doctorate or licentiate degree. The doctoral degree is equivalent to four years of study and a licentiate degree to two years of study. During the education the student is supervised by one main supervisor and one or more assistant supervisors. The main supervisor is appointed in connection with admission and is, together with the student, responsible for that course studies and the dissertation work is progressing as planned. In connection with the admission an individual study plan has to be submitted according to the internal regulations and guidelines at KTH. The individual plan must be updated annually.

The coursework may consist of lectures, literature studies, problem-solving, and active participation in seminars, and must include at least 30 credits for a licentiate degree and 60 credits for a doctorate degree.

During the education, students are encouraged to actively participate in research seminars within the Doctoral Program in Physics. For international experience the doctoral student should, if given the opportunity, relocate part of their research studies abroad through international research collaboration.

If the student teaches or performs other departmental duties, the licentiate degree and the doctorate degree may in normal circumstances take up to 2.5 years or 5 years, respectively. When teaching at the first- or second-level, the students must have completed introductory courses in university pedagogy, or acquired corresponding knowledge.

Compulsory and recommended courses

The choice of courses to be included in the education should be based on student's prior knowledge, and the knowledge and skills considered necessary for the realization of the theses and dissertation work, and in order to achieve the program objectives.

Due to the range of research topics within the program, the inter- and multi-disciplinary nature of research activities, and that the third level education is highly individualized depending on the student's knowledge and required skills, there are no mandatory courses within the program. Consequently, within the Doctoral Program in Physics, the student's and supervisor's planning, design and monitoring of the individual study plan is of central importance for the education.

A large number of courses are offered within the Doctoral Program in Physics, but the student may, in consultation with their main supervisor also select other courses within or outside KTH in order to acquire the knowledge considered necessary for completing the thesis work the dissertation.

Doctoral students with an educational background other than physics should take a complementary course in Modern Physics, comprising of at least 10 credits, in order to gain deeper knowledge in some of the main areas of Physics. If the student has previously taken courses with corresponding content in previous education, no further complementary courses are necessary.

An introductory course in university pedagogy is a requirement when teaching at the first- or second-level levels during the education.
The following courses are a selection of the courses taught within the program and can be seen as representative courses of the Doctoral Program in Physics and the different research area.

Thesis

The aim of the education during the thesis-part is for the student to develop an ability to make independent contributions to research, as well as a capability for scientific collaboration, within as well as outside their own subject of study. The thesis should include new research results which the student has prepared independently or in collaboration with others. The main scientific results should meet the quality requirements for publication in internationally recognized journals with peer review. The thesis is typically written as a collection of scientific articles with a specific written summary, a so-called compilation thesis. During the thesis work the student should therefore strive for international publication of the achieved research results. A licentiate thesis should include scientific results corresponding to at least two for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least one international conference. A doctorate thesis should include scientific results corresponding to at least four for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least two international conferences. The doctoral thesis and licentiate thesis should be written in English.

This thesis work is a mandatory part of the doctoral education to be defended at a public defense in accordance with internal regulations and guidelines that are specified for doctoral and licentiate degrees at KTH.

Biological and Biomedical Physics

Description of the specialisation

Current research

Computational Biological Physics

The area includes the study of biological problems with the analytical and computational methods from physics, as well as the physical problems of immediate or potential biological interest. The research area differs from bioinformatics as emphasis is placed in the physical issues and/or dynamic models.

Biomedical and X-Ray Physics

Mainly experimental research in applied physics is carried out, aimed towards the development of relevant biomedical instrumentation. Development of new types of X-ray sources and X-ray optics and their use for microscopy, medical imaging, bio-analysis as well as materials physics. New optical and acoustic methods for biomedical applications, such as ultrasound-tweezers for cell biology and visual optics for improved peripheral vision.

Medical imaging

Research on technical and physical methods in healthcare and medical research in close collaboration between physicians, physicists and engineers. This subject is highly multidisciplinary and results from almost all physical and technical disciplines used. For successful research, a good understanding of the human biology and physiology, the physicians techniques and methods, and physical principles is required.

Biomolecular Physics

Research into the use and development of biophysical methods to study the function of biomolecules based on their occurrence, structure, dynamics and interactions. The focus is on development of fluorescence-based methods for single molecule- and fluctuation-spectroscopy and its applications for fundamental biomolecular studies, where the possibility of being able to study single molecules can be utilized, as well as for applications in ultra-sensitive medical diagnostic and screening procedures.

Cell Physics

The subject plan was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.
Experimental and theoretical studies on the functions of biological cells, at the boundary between biology and physics. In particular technology development of microscopic methods and techniques, with a focus on studies of individual proteins and their integrated impact on the cell's interaction with the environment. Main themes of research are cellular transport mechanisms and signaling pathways.

Theoretical Biological Physics

Theoretical Biological Physics is the application of theoretical methods from physics to describe biological processes at the molecular level, with emphasis especially from statistical mechanics. The research involves analysis of scientific problems and the development of mathematical models within molecular and cell biology.

Programme structure

The education on the doctoral level consists of a course-part and a thesis-part and can be completed with a doctorate or licentiate degree. The doctoral degree is equivalent to four years of study and a licentiate degree to two years of study. During the education the student is supervised by one main supervisor and one or more assistant supervisors. The main supervisor is appointed in connection with admission and is, together with the student, responsible for that course studies and the dissertation work is progressing as planned. In connection with the admission an individual study plan has to be submitted according to the internal regulations and guidelines at KTH. The individual plan must be updated annually.

The coursework may consist of lectures, literature studies, problem-solving, and active participation in seminars, and must include at least 30 credits for a licentiate degree and 60 credits for a doctorate degree.

During the education, students are encouraged to actively participate in research seminars within the Doctoral Program in Physics. For international experience the doctoral student should, if given the opportunity, relocate part of their research studies abroad through international research collaboration.

If the student teaches or performs other departmental duties, the licentiate degree and the doctorate degree may in normal circumstances take up to 2.5 years or 5 years, respectively. When teaching at the first- or second-level, the students must have completed introductory courses in university pedagogy, or acquired corresponding knowledge.

Compulsory and recommended courses

The choice of courses to be included in the education should be based on student's prior knowledge, and the knowledge and skills considered necessary for the realization of the theses and dissertation work, and in order to achieve the program objectives.

Due to the range of research topics within the program, the inter- and multi-disciplinary nature of research activities, and that the third level education is highly individualized depending on the student's knowledge and required skills, there are no mandatory courses within the program. Consequently, within the Doctoral Program in Physics, the student's and supervisor's planning, design and monitoring of the individual study plan is of central importance for the education.

A large number of courses are offered within the Doctoral Program in Physics, but the student may, in consultation with their main supervisor also select other courses within or outside KTH in order to acquire the knowledge considered necessary for completing the thesis work the dissertation.

Doctoral students with an educational background other than physics should take a complementary course in Modern Physics, comprising of at least 10 credits, in order to gain deeper knowledge in some of the main areas of Physics. If the student has previously taken courses with corresponding content in previous education, no further complementary courses are necessary.

An introductory course in university pedagogy is a requirement when teaching at the first- or second-level levels during the education.

The following courses are a selection of the courses taught within the program and can be seen as representative courses of the Doctoral Program in Physics and the different research area.
Thesis

The aim of the education during the thesis-part is for the student to develop an ability to make independent contributions to research, as well as a capability for scientific collaboration, within as well as outside their own subject of study. The thesis should include new research results which the student has prepared independently or in collaboration with others. The main scientific results should meet the quality requirements for publication in internationally recognized journals with peer review. The thesis is typically written as a collection of scientific articles with a specific written summary, a so-called compilation thesis. During the thesis work the student should therefore strive for international publication of the achieved research results. A licentiate thesis should include scientific results corresponding to at least two for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least one international conference. A doctorate thesis should include scientific results corresponding to at least four for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least two international conferences. The doctoral thesis and licentiate thesis should be written in English.

This thesis work is a mandatory part of the doctoral education to be defended at a public defense in accordance with internal regulations and guidelines that are specified for doctoral and licentiate degrees at KTH.

Nuclear Engineering

Description of the specialisation

Current research

Nuclear Safety

The research activity includes studies of severe accident phenomena in nuclear power plants; advanced multi-physics and multi-scale simulation methods for coupled neutron-kinetic and thermal-hydraulic analysis of transients and accidents in nuclear reactors; experiments and analyses to support safety design of advanced nuclear energy systems, and basic research in boiling heat transfer.

Reactor Physics

Research on reactor physics focuses on the transmutation of nuclear waste, mainly in design and safety analysis of fourth-generation lead-cooled reactors. In our uranium laboratory, we are developing advanced nitride fuels with high thermal conductivity. We also use multi-scale modeling to study nuclear fuel characteristics during operation, as well as the radiation damage in different steel models.

Reactor Technology

Reactor Technology includes engineering principles for design, analysis and understanding of processes and systems in nuclear power plants with or in connection with thermal hydraulics, reactor physics and structural integrity. The research is largely focused on two-phase flows with applications to nuclear fuel. Both experimental and theoretical research is performed within the group. The experimental part mainly focuses on heat transfer in the reactor core, while the theoretical part covers the methodology and modeling of nuclear systems from micro-scale to system-level with particular focus on the connection between the reactor physics, structural dynamics and thermo-hydraulic processes.

Programme structure

The education on the doctoral level consists of a course-part and a thesis-part and can be completed with a doctorate or licentiate degree. The doctoral degree is equivalent to four years of study and a licentiate degree to two years of study. During the education the student is supervised by one main supervisor and one or more assistant supervisors. The main supervisor is appointed in connection with admission and is, together with the student, responsible for that course studies and the dissertation work is progressing as planned. In connection with the admission an individual study plan has to be submitted according to the internal regulations and guidelines at KTH. The individual plan must be updated annually.
The coursework may consist of lectures, literature studies, problem-solving, and active participation in seminars, and must include at least 30 credits for a licentiate degree and 60 credits for a doctorate degree.

During the education, students are encouraged to actively participate in research seminars within the Doctoral Program in Physics. For international experience the doctoral student should, if given the opportunity, relocate part of their research studies abroad through international research collaboration.

If the student teaches or performs other departmental duties, the licentiate degree and the doctorate degree may in normal circumstances take up to 2.5 years or 5 years, respectively. When teaching at the first- or second-level, the students must have completed introductory courses in university pedagogy, or acquired corresponding knowledge.

Compulsory and recommended courses

The choice of courses to be included in the education should be based on student's prior knowledge, and the knowledge and skills considered necessary for the realization of the theses and dissertation work, and in order to achieve the program objectives.

Due to the range of research topics within the program, the inter- and multi-disciplinary nature of research activities, and that the third level education is highly individualized depending on the student's knowledge and required skills, there are no mandatory courses within the program. Consequently, within the Doctoral Program in Physics, the student's and supervisor's planning, design and monitoring of the individual study plan is of central importance for the education.

A large number of courses are offered within the Doctoral Program in Physics, but the student may, in consultation with their main supervisor also select other courses within or outside KTH in order to acquire the knowledge considered necessary for completing the thesis work the dissertation.

Doctoral students with an educational background other than physics should take a complementary course in Modern Physics, comprising of at least 10 credits, in order to gain deeper knowledge in some of the main areas of Physics. If the student has previously taken courses with corresponding content in previous education, no further complementary courses are necessary.

An introductory course in university pedagogy is a requirement when teaching at the first- or second-level levels during the education.

The following courses are a selection of the courses taught within the program and can be seen as representative courses of the Doctoral Program in Physics and the different research area.

Thesis

The aim of the education during the thesis-part is for the student to develop an ability to make independent contributions to research, as well as a capability for scientific collaboration, within as well as outside their own subject of study. The thesis should include new research results which the student has prepared independently or in collaboration with others. The main scientific results should meet the quality requirements for publication in internationally recognized journals with peer review. The thesis is typically written as a collection of scientific articles with a specific written summary, a so-called compilation thesis. During the thesis work the student should therefore strive for international publication of the achieved research results. A licentiate thesis should include scientific results corresponding to at least two for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least one international conference. A doctorate thesis should include scientific results corresponding to at least four for the research area representative articles publishable in internationally recognized journals with peer review, and include research results that have been presented at at least two international conferences. The doctoral thesis and licentiate thesis should be written in English.

This thesis work is a mandatory part of the doctoral education to be defended at a public defense in accordance with internal regulations and guidelines that are specified for doctoral and licentiate degrees at KTH.
Entry requirements and selection

General and special admission requirements and prior knowledge
The general entry requirements follow the regulations specified by the Higher Education Ordinance, and local rules and regulations at KTH.

For special entry requirements to third level education within the Doctoral Program in Physics, the applicant must have:

1. fulfilled the general entry requirements within the area of Physics, or
2. otherwise acquired largely equivalent knowledge, either in or outside Sweden, within areas appropriate for the research area.

Doctoral students are expected to be able to read and write scientific English and to be able to speak English without difficulty. Higher eligibility requirements may apply, depending on the type of research and specialization, and will be outlined in the announcement of the vacant position.

Selection rules and procedures
Selection of applicants is based on the skills profile that is being sought for in the specific projects described in the announcement of the vacant position. Of great interest in the assessment are previous results from advanced courses at second-level, or independently conducted scientific work. Besides general and special eligibility, it is the degree of maturity and ability of independent judgment and critical analysis that provided the basis for the selection. The final choice is based on the student's assessed ability and capability to carry out and assimilate the whole third-level education.

For final admission to the Doctoral Program in Physics it is also required that:

- a supervisor is available and can be appointed to the student,
- there is funding for the student,
- an opening can be prepared within a research group, and
- equipment and infrastructure required for the completion education is available.

The programme’s degrees and examinations

Degree of Licentiate and Degree of Doctor (PhD)
The courses at the doctoral level should include an oral examination or written knowledge test. The design of the examination should in special cases be such that the examiner can be satisfied that the student meets the learning outcomes. Decisions regarding accreditation of courses taken prior to admission to doctoral level education are made in accordance with internal regulations and guidelines that are specified for doctorate and licentiate degree at KTH.

The programme’s examinations
Doctoral programme — Physics

Appendix 2: List containing names and subject areas of supervisors within the programme

The programme description was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.

Research areas:
- AP - Atomic, Subatomic, and Astrophysics
- MN - Material- and Nano Physics
- BM - Biological and Biomedical Physics
- TP - Theoretical Physics
- OP - Optics and Photonics
- NE - Nuclear Engineering

<table>
<thead>
<tr>
<th>#</th>
<th>Professor</th>
<th>Department</th>
<th>Research area</th>
<th>Primary</th>
<th>Active in the following areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aurell Erik</td>
<td>Computational Biology</td>
<td>BM/TP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Björk Gunnar</td>
<td>Applied Physics</td>
<td>OP</td>
<td></td>
<td>X X X</td>
</tr>
<tr>
<td>3</td>
<td>Brismar Hjalmar</td>
<td>Applied Physics</td>
<td>BM</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>4</td>
<td>Carlsson Kjell</td>
<td>Applied Physics</td>
<td>BM</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>5</td>
<td>Cederwall Bo</td>
<td>Physics</td>
<td>AP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Danielsson Mats</td>
<td>Physics</td>
<td>BM</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>Edholm Olle</td>
<td>Theoretical Physics</td>
<td>TP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Friberg Ari T.</td>
<td>Optics and Photonics</td>
<td>OP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Grishin Alexander</td>
<td>Materials Physics</td>
<td>MN</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>10</td>
<td>Gudowsk Waclawi</td>
<td>Physics</td>
<td>NE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Haviland David</td>
<td>Applied Physics</td>
<td>NM</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>12</td>
<td>Hellgren Jeanette</td>
<td>Computational Biology</td>
<td>BM</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>Hertz Hans</td>
<td>Applied Physics</td>
<td>BM</td>
<td></td>
<td>X X X</td>
</tr>
<tr>
<td>14</td>
<td>Jaskorzynska Bozena</td>
<td>Optics and Photonics</td>
<td>OP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>Johnsson Arne</td>
<td>Physics</td>
<td>AP</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td>Karlsson Anders</td>
<td>Optics and Photonics</td>
<td>OP</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>17</td>
<td>Karlsson Ulf</td>
<td>Materials Physics</td>
<td>MN</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
The programme description was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korenivski Vladislav</td>
<td>Applied Physics</td>
<td>OP</td>
</tr>
<tr>
<td>Langmann Edwin</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Lansner Anders</td>
<td>Computational Biology</td>
<td>BM</td>
</tr>
<tr>
<td>Laurell Fredrik</td>
<td>Applied Physics</td>
<td>OP</td>
</tr>
<tr>
<td>Lefvert Tomas</td>
<td>Physics</td>
<td>NE</td>
</tr>
<tr>
<td>Lindahl Erik</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Linnal Jan</td>
<td>Materials Physics</td>
<td>MN</td>
</tr>
<tr>
<td>Lourudassous Sebastian</td>
<td>Materials Physics</td>
<td>MN</td>
</tr>
<tr>
<td>Lund-Jensen Bengt</td>
<td>Physics</td>
<td>AP</td>
</tr>
<tr>
<td>Marcinkevicius Saulius</td>
<td>Optics and Photonics</td>
<td>OP</td>
</tr>
<tr>
<td>Mickelsson Jouko</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Muhammed Mamoun</td>
<td>Materials Physics</td>
<td>MN</td>
</tr>
<tr>
<td>Ohlsson Tommy</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Pasiskevicius Valadas</td>
<td>Applied Physics</td>
<td>OP</td>
</tr>
<tr>
<td>Pearce Mark</td>
<td>Physics</td>
<td>AP</td>
</tr>
<tr>
<td>Qiu Min</td>
<td>Optics and Photonics</td>
<td>OP</td>
</tr>
<tr>
<td>Rachlew Elisabeth</td>
<td>Physics</td>
<td>AP</td>
</tr>
<tr>
<td>Rosengren Anders</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Thylén Lars</td>
<td>Optics and Photonics</td>
<td>OP</td>
</tr>
<tr>
<td>Tjernberg Oscar</td>
<td>Materials Physics</td>
<td>MN</td>
</tr>
<tr>
<td>Wallenius Janne</td>
<td>Physics</td>
<td>NE</td>
</tr>
<tr>
<td>Wallin Mats</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Widengren Jerker</td>
<td>Applied Physics</td>
<td>BM</td>
</tr>
<tr>
<td>Wyss Ramon</td>
<td>Physics</td>
<td>AP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anand Srinivasan</td>
<td>Materials Physics</td>
<td>MN</td>
</tr>
<tr>
<td>Andersson Magnus</td>
<td>Materials Physics</td>
<td>MN</td>
</tr>
<tr>
<td>Anglart Henryk</td>
<td>Physics</td>
<td>NE</td>
</tr>
<tr>
<td>Belonoshko Anatoly</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Berglind Eilert</td>
<td>Optics and Photonics</td>
<td>OP</td>
</tr>
<tr>
<td>Cartling Bo</td>
<td>Theoretical Physics</td>
<td>TP</td>
</tr>
<tr>
<td>Ekeberg Örjan</td>
<td>Computational Biology</td>
<td>BM</td>
</tr>
</tbody>
</table>

Associate Professors and Researchers

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Research area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Active in the following areas

<table>
<thead>
<tr>
<th>AP</th>
<th>TP</th>
<th>MN</th>
<th>OP</th>
<th>BM</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The programme description was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11. Appendix 2, page 2 of 3.
| Name | Department | Research area | |
|------------------|------------------------|---------------|
| 49 Ekenberg Ulf | Optics and Photonics | OP X |
| 50 Fransen Erik | Computational Biology | BM X |
| 51 Göthelid Mats | Materials Physics | MN X X |
| 52 Henelius Patrik | Theoretical Physics | TP X |
| 53 Krishnamurthy Supriya | Computational Biology | BM X |
| 54 Kudinov Pavel, doc | Physics | NE X |
| 55 Lidmar Jack | Theoretical Physics | TP X |
| 56 Manneberg Göran | Applied Physics | BM X X |
| 57 Ryde Felix | Physics | AP X |
| 58 Unsbo Peter | Applied Physics | BM X X |
| 59 Vogt Ulrich | Applied Physics | BM X |
| 60 Weimin Ma | Physics | NE X |
| 61 Westergren Urban | Optics and Photonics | OP X |
| 62 Wosinska Lena | Optics and Photonics | OP X |
| 63 Wosinski Lech | Optics and Photonics | OP X |
| 64 Wiklund Martin | Applied Physics | BM X |
| 65 Åkerman Johan | Materials Physics | MN X |
Doctoral programme — Physics

Appendix 3: Presentation of the programme’s national and international network

The programme description was approved by Fakultetsnämnden (Faculty Board) November 30, 2010. Valid from Spring 11.