EI2452 Reliability Evaluation of Electrical Power Systems 7.5 credits

Tillförlitlighetsanalys för elkraftsystem

Course syllabus for EI2452 valid from Spring 19

This is a translation of the Swedish, legally binding, course syllabus.

Grading scale: A, B, C, D, E, FX, F

Education cycle: Second cycle

Main field of study: Electrical Engineering

Intended learning outcomes

After completed course the students should be able to use reliability assessment as a tool for decision support for planning and operation of the electric power system. After the course is completed, the participants have gained knowledge to:

- Describe the fundamental definitions and concepts for reliability assessment
- Analyze a system and its components using the following techniques for reliability assessment:
 - Network modelling
 - Component importance techniques
 - Markov modelling
 - Lifetime models
- Analyze an electrical distribution system with the above described methods tools such as NEPLAN
- Describe how reliability is treated in the regulation.
- Formulate an Life cycle cost model (LCC)
- Formulate a reliability centred maintenance plan following fundamentals of RCM and knowledge in more advanced methods like RCAM.

Course main content

This course is about utilizing quantitative methods to analyze and prevent risks of failure in electrical power systems, and shows on practical examples.

The lectures are concentrated to three parts, and a final seminar. The course parts includes the following areas of attention:

- Models; basic methods and techniques
- Analysis; input data, approximative methods and tools.
- Results; cost efficient strategies and economic incentives

The following activities are part of the course

- Work with project assignment individually or in pairs. The problem formulation should relate to a real situation and preferably connected to your area of work/studies, written report.
- Lectures presenting different methods for reliability analysis in electric power engineering.
• Guest lectures with speakers from the industry, showing on results of reliability analysis.
• Computer laborations that exercise the application of methods and tools that are presented in the course.
• Written examination, testing reached knowledge and abilities in the methods taught in the course, one examination in classroom and one home exam.
• Seminar with oral presentation of projects as well as opposition to projects. Participation is mandatory.

Disposition
The course is offered in three main blocks, with each block consisting of a number of consecutive with lectures, online teaching and/or computer laborations. Between the blocks there are breaks for selfstudies. The course ends with a seminar day and final adjustments of reports.

Language of instruction
Language of instruction is specified in the course offering information in the course and programme directory.

Eligibility
Completed course SF1920 Probability Theory and Statistics, or equivalent course of at least 5 credits. Completed course of at least 6 credits in electrical engineering, eg EG2100 Power System Analysis, EG2200 Power Generation Operation and Planning, EH2741 Communication and Control in Electric Power Systems, EI2436 Power Grid Technology and Substation Design, EJ2301 Power Electronics or EJ2201 Electrical Machines and Drives, or equivalent experience.

Literature

Examination
• PRO1 - Project work, 4.5 credits, grading scale: P, F
• TEN1 - Exam, 3.0 credits, grading scale: A, B, C, D, E, FX, F

Requirements for final grade
For passing grade in the course the following is required:

PRO1, 4.5 credits:
• Approved project assignment, written and oral presentations.
• Approved laboratory work, including attending laboratory exercises and written laboration reports.

TEN1, 3 credits:
• Approved examination, divided into two occasions.