EI3304 Integral Equations in Electromagnetics 6.0 credits

Integralekvationsmetoder inom elektromagnetism

The course is intended for PhD students whose research topic is within or related to classical electromagnetic field theory, with applications to scattering from objects with general shapes 

  • Education cycle

    Third cycle
  • Main field of study

  • Grading scale

    P, F

Information for research students about course offerings

The course is given when there is sufficient demand. Please contact the examiner if you are interested in taking the course.

Intended learning outcomes

After completion of the course the student shall be able to

  • explain briefly the Fredholm theory for integral equations 
  • derive electromagnetic representation formulas, from generalized  Green formulas,   
  • derive line, surface, and volume integral equations   
  • discretize integral equations into matrix equations 
  • explain some methods for improved and accelerated convergence 

Course main content

Numerical methods for analyzing scattering of electromagnetic waves from objects with complicated shape 

Disposition

Lessons and consultations 

Eligibility

Literature

Colton & Kress, Integral Equation Methods in Scattering Theory
Morita & Kumagi, Integral Equation methods for Electromagnetics
Wang, Generalized Moment Methods in Electromagnetics
Chew et.al., Fast and Efficient Algorithms in Computational Electromagnetics Research papers 

Examination

  • EXA1 - Examination, 6.0, grading scale: P, F

Four home‐assignments: 

  1. Electrostatic or magnetostatic problem 
  2. Thin‐wire antenna 
  3. Scattering from metallic or homogeneous object 
  4. Scattering from heterogeneous object 

Requirements for final grade

Satisfactory performance in all home‐assignments. Oral presentation of one assignment.

Offered by

EECS/Electromagnetic Engineering

Examiner

Martin Norgren <mnorgren@kth.se>

Version

Course syllabus valid from: Autumn 2011.
Examination information valid from: Spring 2019.