Skip to main content
Till KTH:s startsida Till KTH:s startsida

FSD3136 Numerical Methods for Sound Propagation I 6.0 credits

Course offerings are missing for current or upcoming semesters.
Headings with content from the Course syllabus FSD3136 (Autumn 2018–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

The course covers different numerical methods for computing long range sound propagation in non-homogenous media (air and water). Students will implement basic numerical schemes for different environments and analyse and compare the results from different propagation codes.

Intended learning outcomes

The learning outcomes of the course are that the student should be able to:

  • Derive the basic acoustic equations for homogenous media (the linear acoustic equations, the wave equation and Helmholtz equation) from conservation of mass and momentum.
  • Give a general overview of different numerical approaches to solve the Helmholtz equation in non homogenous media and describe their basic assumptions and respective strengths and weaknesses.  
  • Possess basic knowledge of source modelling for computing sound propagation in atmosphere and in underwater applications.
  • Implement Helmholtz equation solvers, for instance Ray tracing, Normal modes, Wavenumber integration and Parabolic equation techniques and compare the results to analytical results or benchmark cases.
  • Model boundary conditions in atmospheric and under water acoustics and numerical implementations of these in different algorithms.
  • Compare different numerical schemes with respect to robustness, computational times, memory allocation and accuracy.

Literature and preparations

Specific prerequisites

MSc within vehicle engineering, physics or an education corresponding to those are required for eligibility.

Recommended prerequisites

Numerical analysis on MSc level and mathematical methods for physicists or corresponding courses are recommended. 

Equipment

Computer

Literature

Läsanvisningar från följande böcker samt utvalda vetenskapliga artiklar utgör kurslitteraturen:

E. Salomons, Computational atmospheric acoustics, Kleuwer, 2003

F. B. Jensen et al, Computational ocean acoustics, Springer, 2011

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

P, F

Examination

  • PRO1 - Project work, 4.0 credits, grading scale: G
  • TEN1 - Exam, 2.0 credits, grading scale: G

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

The examination of students will be performed by an oral exam and by evaluating hand-in exercises and active participation in the seminars.  

Other requirements for final grade

Active participation in the seminars. Passed on oral exam and passed hand-in exercises.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

This course does not belong to any Main field of study.

Education cycle

Third cycle

Add-on studies

No information inserted

Contact

Karl Bolin (kbolin@kth.se)

Postgraduate course

Postgraduate courses at SCI/Aeronautical and Vehicle Engineering