DD1354 Models and Simulation
6.0 credits

Modeller och simulering

This is a translation of the Swedish, legally binding, course syllabus.

If the course is discontinued, students may request to be examined during the following two academic years

Establishment

On 2019-10-15, the Head of School of EECS has decided to establish this official course syllabus to apply from spring term 2020 (registration number J-2019-0337).

Decision to discontinue this course

Grading scale

A, B, C, D, E, FX, F

Education cycle

First cycle

Main field of study

Technology
Language of instruction

The language of instruction is specified in the course offering information in the course catalogue.

Intended learning outcomes

Having passed the course, the student shall be able to

- formulate particle models and mass-spring models as systems of ordinary differential equations, solution methods for system of linear and nonlinear equations and general time-stepping methods for the solution of systems of ordinary differential equations
- design computer programs for computer simulation with ordinary differential equations, initial conditions, time-stepping and stability
- implement visualisations for computer simulation
- define and examine a problem with computer simulation, ordinary differential equations, solution methods for system of linear and non-linear equations and/or general time-stepping method for the solution of system of ordinary differential equations and visualise the results.

Course contents

Basic ideas and concepts: particle models, mass-spring models, ordinary differential equations, stability, systems of non-linear equations.

Algorithms and programming: time-stepping for the solution of a general ordinary differential equation, fixed point iteration, Newton's method.

Specific prerequisites

For non-program students: general admission requirements

Examination

- LABA - Laboratory work, 2.0 credits, grading scale: P, F
- PROA - Project, 3.0 credits, grading scale: A, B, C, D, E, FX, F
- TENA - Written exam, 1.0 credits, grading scale: P, F

Based on recommendation from KTH's coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.
Transitional regulations

Students who took the course 2019 or earlier and need to complete one of the earlier components LAB1 or TEN1 should contact the examiner to obtain a new examination assignment.

Ethical approach

- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.