

DD2352 Algorithms and Complexity 7.5 credits

Algoritmer och komplexitet

This is a translation of the Swedish, legally binding, course syllabus.

Establishment

Grading scale

A, B, C, D, E, FX, F

Education cycle

Second cycle

Main field of study

Computer Science and Engineering

Specific prerequisites

- Knowledge in algorithms and data structures, 6 credits, corresponding to completed course DD1320-DD1328/DD1338/DD2325/ID1020/ID1021 or completed exam elements KONT and LABD in DD1326.
- Knowledge and skills in programming, 6 credits, corresponding to completed course DD1310-DD1319/DD1321/DD1331/DD1333/DD1337/DD100N/ID1018/ID1022.
- Knowledge in linear algebra, 7.5 credits, corresponding to completed course SF1624/SF1672/SF1684.
- Knowledge in one-variable analysis, 7.5 credits, corresponding to completed course SF1625/SF1673/SF1685.

- Knowledge of discrete mathematics, 7.5 credits, equivalent to completed course SF1610/SF1630/SF1662/SF1679/SF1688, or participation in one of these courses in parallel with DD2352.
- Skills in English equivalent to the upper secondary school course English B/English 6.

Intended learning outcomes

After passing the course, the student should be able to

- develop and implement algorithms and reductions, and analyse them with respect to correctness and efficiency
- compare alternative algorithms considering efficiency
- define and explain central concepts such as P, NP, NP-completeness and undecidability
- compare problems with respect to complexity by means of reductions

in order to

- independently be able to design computer programs that use time and memory efficiently and thereby can contribute to economically and environmentally sustainable development
- in professional life identify problems that are unrealistically resource demanding or not possible to solve on a computer.

Course contents

Design principles of algorithms: Divide and conquer, greedy algorithms, dynamic programming. Algorithm analysis. Probabilistic algorithms. Approximation algorithms. Selected applications in sets, graphs, arithmetic and geometry. Implementation of algorithms.

Computability and complexity: Reductions. The complexity classes P (polynomial time), NP (non-deterministic polynomial time), PSPACE (polynomial space) and BPP (probabilistic polynomial time with bounded error). NP completeness and NP hardness reductions. Undecidable problems.

Examination

- MAS2 Mastery Test, 1.5 credits, grading scale: A, B, C, D, E, FX, F
- MAS1 Mastery Test, 1.5 credits, grading scale: A, B, C, D, E, FX, F
- LAB1 Laboratory Work, 1.5 credits, grading scale: P, F
- TEN2 Written Exam, 3.0 credits, grading scale: P, F

Based on recommendation from KTH's coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

If the course is discontinued, students may request to be examined during the following two academic years.

Ethical approach

- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Additional regulations

A student who, at the beginning of the course, has not completed 7.5 higher education credits of discrete mathematics, equivalent to SF1610/SF1662/SF1679/SF1688, must take one of these courses in parallel with DD2352.