DT1175 Sound 7.5 credits

This is a translation of the Swedish, legally binding, course syllabus.

If the course is discontinued, students may request to be examined during the following two academic years.

Establishment

On 2020-10-13, the Head of School of EECS has decided to establish this official course syllabus to apply from the spring semester 2021 (registration number J-2020-2223).

Grading scale

A, B, C, D, E, FX, F

Education cycle

First cycle

Main field of study

Technology

Specific prerequisites

Completed course corresponding to SK1120 Waves.

Active participation in a course offering where the final examination is not yet reported in LADOK is considered equivalent to completion of the course.

Registering for a course is counted as active participation.

The term 'final examination' encompasses both the regular examination and the first re-examination.
Language of instruction
The language of instruction is specified in the course offering information in the course catalogue.

Intended learning outcomes
On completion of this course, you should be able to

• describe the different levels of representation in acoustic communication, and categorise given phenomena and problems to the correct level,

• make a qualified judgment as to whether communication by sound will work in different given circumstances, including distance, number of people, equipment, venue, programme material, ambient noise, user interfaces and storage media.

In order to reach these overall goals, you must be able to

• apply wave theory and concepts of elementary acoustics to describe how sound with different wavelengths from different sources will propagate in given environments,

• apply basic knowledge of the capabilities and limitations of human hearing in judging sounds for audibility, localisation and health hazards,

• make simple calculations of delays, RMS values, acoustic pressures, powers, intensities, levels in dB, and room acoustic metrics; and select formulas that are appropriate for solving a given problem,

• explain qualitatively what a spectrum of a sound represents, and how it may be modified by filters,

• account for acoustical and electrical particularities of common types of microphones and loudspeakers,

• describe at a functional level (such as block diagrams) how sound signals are represented and processed in analog and digital forms,

• recognise common types of distortion and unwanted sounds by ear,

• account in general terms for how various features in speech and music signals are carriers of information,

• describe current speech technology with regard to main principles, application areas, potential and limitations.

Course contents
Lectures and tutorials: the communication chain, elementary acoustics, the ear and hearing, room acoustics, microphones and loudspeakers, analogue and digital representations of sound, stereo and spatial audio, digital audio technology, music as an information carrier, the human voice, speech technology.

Laboratories: measurements of one's own hearing, representation and distortion of signals, musical representation and musical expression.

Field trip: patching exercise with a mixing desk, visit to a recording studio.
Examination

• LAB1 - Laboratories, 2.5 credits, grading scale: P, F
• TEN1 - Exam, 5.0 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade

Passed exam and completed laboratory sessions.

Ethical approach

• All members of a group are responsible for the group's work.
• In any assessment, every student shall honestly disclose any help received and sources used.
• In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.