
ID1217 Concurrent Program-
ming 7.5 credits
Programmering av parallella system

This is a translation of the Swedish, legally binding, course syllabus.

Establishment
Course syllabus for ID1217 valid from Autumn 2008

Grading scale
A, B, C, D, E, FX, F

Education cycle
First cycle

Main field of study
Information Technology, Technology

Specific prerequisites
Completed upper secondary education including documented proficiency in 
Swedish corresponding to Swedish B and English corresponding to English 
A. For students who received/will receive their final school grades after 31 
December 2009, there is an additional entry requirement for mathematics as 
follows: documented proficiency in mathematics corresponding to Mathemat-
ics A. And the specific requirements of mathematics, physics and chemistry 
corresponding to Mathematics D, Physics B and Chemistry A.

Course syllabus for ID1217 valid from Autumn 08, edition 3 Page 1 of 4



Language of instruction
The language of instruction is specified in the course offering information in the course 
catalogue.

Intended learning outcomes
The overall aim of this course is provide the necessary knowledge in programming models, 
concepts, techniques, synchronization and communication mechanisms, and environments 
used in concurrent programming with threads and processes, i.e. in multithreaded, parallel 
and distributed programming.

After completion of the course the student should have a good understanding of the problems 
and solution strategies of process-oriented programming.More specifically, after completion 
of the course, students should be able to:

Know concurrent programming concepts (e.g. task, process, thread, process state, context 
switch, etc.), models (e.g. shared memory, message passing) and paradigms (e.g. iterative 
parallelism, recursive parallelism, producers and consumers, pipelines, dataflow, clients 
and servers, peers); understand interleaving semantics and non-determinism of concurrent 
execution. 

 • Analyze a concurrent program with shared variables, e.g. count and construct possible his-
tories of the program and its possible results; reason about a concurrent program: whether it 
is correct, whether it terminates, whether it exposes race conditions; prove a safety property, 
such as partial correctness, using axiomatic semantics of concurrent programs with shared 
variables.

 • Know how concurrent threads can be synchronized. Know and evaluate different solutions 
to the critical section problem. Understand and apply mutual exclusion and condition 
synchronization in multithreaded programs with shared variables. Understand, choose and 
use different synchronization mechanisms, such as locks, condition variables, barriers, 
semaphores and monitors.

 • Develop an outline of a concurrent program with shared variables using mutual exclusion 
and condition synchronization to synchronize threads. Develop and use monitors with 
condition variables in a multithreaded program.

 • Design, develop and implement concurrent programs with shared variables using existing 
concurrent programming environments such as pthreads in C, Java threads and monitors, 
Java concurrent utilities.

 • Understand and use parallel algorithms in concurrent programs.
 • Know how distributed processes can communicate with each other. Understand, choose 

and use different communication mechanisms, such as asynchronous and synchronous 
message passing, Remote Procedure Calls and Rendezvous, Remote Method Invocations in 
concurrent programs with distributed processes.

 • Develop an outline of a distributed program using message passing, RPC, rendezvous or 
RMI for inter-process communication.

 • Design, develop and implement distributed programs with processes using a distributed 
programming environment such as Socket API or Massage Passing Interface (MPI) in C, 
Sockets or Remote Method Invocation (RMI) in Java.

Course syllabus for ID1217 valid from Autumn 08, edition 3 Page 2 of 4



 • Measure and estimate speedup which can be achieved due to parallel execution.
 • Know operating system support for processes, blocking synchronization mechanisms 

such condition variables and semaphores in a single-processor and in a shared memory 
multiprocessor; support for message passing in a distributed memory platform.

Course contents
Concurrent programming with threads and shared variables.
Processes and synchronization.
Critical sections, locks, barriers, semaphores and monitors.
Case studies: threads in Java, Pthreads.
Parallel and distributed programming with processes.
Message passing, RPC, RMI and rendezvous. Case study: Java RMI.
Paradigms for process interaction.
An overview parallel and distributed programming environments such as MPI, PVM and 
OpenMP. Performance issues.

Course literature
Foundations of Multithreaded, Parallel, and Distributed Programming, Gregory R. Andrews, 
Addison-Wesley, 2000; ISBN 0-201-35752-6.
The book may in the future be replaced by other literature.
Literature produced by the department.

Examination
 • TEN1 - Examination, 4.5 credits, grading scale: A, B, C, D, E, FX, F
 • LABA - Laboratory Work, 3.0 credits, grading scale: P, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide 
how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual stu-
dents.

If the course is discontinued, students may request to be examined during the following two 
academic years.

Other requirements for final grade
Written examination (TEN1;4,5 hp) and two programming assignments (LABA;3.0 hp)

Ethical approach
 • All members of a group are responsible for the group's work.

Course syllabus for ID1217 valid from Autumn 08, edition 3 Page 3 of 4



 • In any assessment, every student shall honestly disclose any help received and sources 
used.

 • In an oral assessment, every student shall be able to present and answer questions about 
the entire assignment and solution.

Course syllabus for ID1217 valid from Autumn 08, edition 3 Page 4 of 4


