Programme syllabus

Master's Programme, Energy Innovation, 120 credits
Masterprogram, innovativ energiteknik
120.0 credits

Valid for students admitted to the education from autumn 13 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

The InnoEnergy Master programme is an umbrella programme which is directed towards a completely new type of education in the energy field, mobilising the innovative and entrepreneurial spirit of the students. At the same time, the full energy knowledge students receive in "classical" two year energy master programmes is kept. This will give the graduates a very deep understanding of the world's energy challenges paired with a significant insight into how energy businesses are created and into the industrial perspective of the energy side in different fields.

The KIC InnoEnergy MSc programmes are specially designed to accommodate the EIT/InnoEnergy label criteria.

Objectives of the study tracks:

• Smart Cities (SMCS)

This specialization deals with the concepts of “Smart Cities” based on scientific literature and reports from case studies.

Studies to investigate, analyze and explore “Smart City“ concepts and solutions in relation to the energy and climate mitigation challenges for important urban development sectors, such as transportation, buildings, consumption, lifestyle, energy production, waste management, water management, etc.

Team-based projects, related to energy and climate mitigation on an urban level together with a relevant stakeholder such as a waste company, the municipality, or a local energy or water utility.

• Smart Electrical Network and Systems (SENS)
SENS focus on how new technological developments electric power in combination with modern information technologies can transform the existing electric power grid infrastructure towards a more 'smart' power network.

After completion of SENS the students should be able to identify, explain, analyze and solve classical problems within the field of electric power engineering, but also analyze new concepts and innovations and their possibilities and limitations - all from idea to final product.

Be able to use models for: analysis of power flows, dynamic behaviour, stability conditions, regulations, electricity market, etc for the electric power system.

Know and apply principles for design, control and monitoring of the electric power grid and its components.

Be able to apply fundamental electromagnetic and physical principles in order to develop models and design criteria for electric power apparatuses and components including technologies that makes them 'smarter'.

Anlayze and synthesize different methods for electric energy conversion based on rotating machines and power electronics.

- Renewable Energy (RENE)

This specialization focuses on the renewable technologies, such as wind energy, concentrated solar thermal power, solar photovoltaic energy, ocean energy, hydro power and geothermal energy.

- Nuclear Energy (NUEY)

This specialization deals nuclear energy engineering. The track is run in close collaboration with industrial partners and provides the latest trends in innovation in nuclear energy.

The track aims at giving the students not only technical knowledge, but also economical, organisational and managerial knowledge. During the second year of studies students will be able to choose following tracks:

- Materials for Nuclear Energy,
- Decommissioning and nuclear waste
- Nuclear Fuel cycle
- Nuclear plant design

**Knowledge and understanding**

For a master’s degree in Energy Innovation the student shall:

- Have knowledge and understanding of cutting-edge research and development and trends within industry
• Have knowledge and understanding of processes, methods, and tools used for development of specific technologies;

• Have knowledge of how to implement a business development process from idea to product.

Skills and abilities

For a master’s degree in Energy Innovation the student shall:

• be able to apply his/her knowledge and understanding, and problem solving abilities in new or unfamiliar environments within broader (or multidisciplinary) contexts related to the field of study.

• have the ability to think beyond boundaries and systematically explore and generate new ideas. (creative skills)

• have the ability to use knowledge, ideas or technologies to create new or significantly improved products, services, processes or policies or new business models. (innovation skills)

• have the ability to transform innovations into feasible business solutions. (entrepreneurial skills)

• have the ability to transform practical experiences into research problems and challenges. (intellectual transforming skills), and have the capability to work in cross-disciplinary teams in the thematic field of the KIC. (research skills)

• demonstrate leadership and decision-making, based on a holistic understanding of the contributions of higher education, research and business to value creation, in limited sized teams and contexts. (leadership skills)

• have the ability to communicate his/her conclusions, and the knowledge and rationale underpinning these, to specialist and non-specialist audiences clearly and unambiguously, both orally and in writing. (communication skills)

Ability to make judgements and adopt a standpoint

For a master’s degree in Energy Innovation the student shall:

• have the ability to integrate knowledge and handle complexity, and formulate judgements with incomplete or limited information;

• demonstrate an appreciation of ethical, scientific and sustainability challenges

Extent and content of the programme

Extent: 2 years (120 credits)

Level of education: Advanced

Tracks:
• Smart Cities (SMCS)
• Smart Electrical Networks and Systems (SENS)
• Renewable Energy (RENE)
• Nuclear Energy (NUEY)

Language of education: English

Eligibility and selection

A completed Bachelor's degree, equivalent to a Swedish Bachelor's degree (180 ECTS), from an internationally recognized university. A Bachelor's degree in Science or Engineering is required for most programs.

Students in their final year of undergraduate education may also apply and receive a conditional offer if they are likely to complete their Bachelor's degree at the latest at the date of programme registration. Information about the conditional acceptance shall be conveyed in the admission letter. A written statement from the Degree Administrations Office (or equivalent department), giving the expected completion date should be included in the application documents.

Applicants following longer technical programmes and who have completed courses equivalent to an amount of 180 ECTS, will be considered on a case-by-case basis.

Language requirements

Applicants must be able to show good knowledge of written and spoken English. If the requirements for English proficiency are higher at one of the partner universities than at KTH, this can influence KTH decision on admission. The requirements may however not be lower than those listed below.

Applicants must provide proof of their English language proficiency, which is most commonly established through an internationally recognized test. The following test results are accepted by KTH.

• TOEFL internet based test, total of 92, 22 writing section
• IELTS score of at least 6.5, no band lower than 6 (only academic training accepted)
• University of Cambridge ESOL Examinations (minimum grade C):
  • Certificate in Advanced English
  • Certificate of Proficiency

Some student groups may be exempted from taking an English proficiency test. For more information see the programme website.

Specific requirements
Smart Cities (SMCS)

Bachelor's degree in electrical engineering or mechanical engineering. Degrees in Sciences, Economics or Management are eligible, but may be subject to preparatory courses.

The selection of students will be based on the excellence of their studies. To verify this, the candidates submit a transcript, requiring a Grade Point Average (GPA) for the BSc study of at least 75% of the scale maximum and a Graduate Record Examination (GRE) General Test score of at least 450 in verbal reasoning, 4.1 in analytical writing skills, and 650 in quantitative reasoning.

Smart Electrical Networks and Systems (SENS)

- A minimum CGPA of 75% of maximum from the bachelor degree or similar
- electrical engineering (including three phase electrical circuits or machines) equivalent to 60 higher education credits
- mathematics (calculus, numerical methods, algebra, probability theory) equivalent to at least 30 higher education credits.

Renewable Energy (RENE)

Bachelor of Science in Mechanical or Chemical Engineering and related disciplines

Coursework in engineering thermodynamics, heat transfer, and fluid mechanics, with 6 hp as the approximate minimum threshold.

Nuclear Energy (NUEY)

Bachelor degree (180 ECTS) in Engineering Physics, Mechanical Engineering, Materials Engineering, Chemical Engineering, or Power Engineering.

Selection process

The selection process is handled by the coordinating institution of each track. However it should be in accordance with KTH’s admission regulations.

Implementation of the education

Structure of the education

Within the European Institute of Innovation and Technology (EIT) KTH participates in the Knowledge and Innovation Community (KIC) InnoEnergy. The Energy Innovation programme is an umbrella structure for the different master’s programmes offered within EIT KIC InnoEnergy. InnoEnergy aims to provide education programmes at master level with significant elements of innovation and entrepreneurship. All these programmes take place in cooperation with several other universities as well as partners in industry which offers internships to the students. These programmes will be designed as tracks within the Energy Innovation master's programme.
The Energy Innovation programme offers a heavy technical component in the traditional engineering sense combined with significant business and entrepreneurship activities throughout the whole curriculum to educate fresh engineers with either a broad overall view of the energy area, a specialized education in one of the thematic areas of the CCs, or an overview of the “well-to wheel” polygeneration perspective.

Courses

The programme is course-based. Lists of courses are included in appendix 1.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

Conditions for participation in the programme

For promotion to study year two at a partner university, the student should have passed all 60 credits from the first year, but a minimum of 45 higher education credits are obligatory.

Course registration is compulsory and should be done with the course responsible at the beginning of each course.

Recognition of previous academic studies

Possible transfer of credits from previous course work follows the KTH Regulations

It is possible for credits to be counted even if the exact course is not available at KTH or if the content of the course syllabus or prior learning qualifications, is not in total agreement with that of KTH. However, the standards normally required by KTH as concerns course level and quality must always be taken into consideration.

Studies abroad

The Energy Innovation program strongly emphasizes mobility between the universities. The education takes place at two different European universities depending on track. Students offered 'double degrees' from the University after completion of studies.

For the different track, the following mobility options apply:

**Smart Cities (SMCS)**

First year: · KULeuven, KTH

Second year: · KTH, UPC, Grenoble INP

**Renewable Energy (RENE)**

First year: · ParisTech, IST, UPC, KTH
Second year: · ParisTech, IST, UPC, KTH

**Nuclear Energy (NUEY)**

First year: · KTH, UPC

Second year: · ParisTech, Grenoble INP

**Degree project**

General rules and policies regarding the diploma work and its grading can be found in the KTH regulations.

The diploma work amounts to 30 credits, which should equal 20 weeks of full time studies. A student may apply for starting a thesis project given that most of the course work has been accomplished, corresponding to 60 credits out of which at least 30 credits at the advanced level within the major subject of the program.

The thesis should be implemented within the main field of study and it is encouraged to link the thesis to industry.

The thesis is graded on the scale A-F according to the KTH’s polices.

**Degree**

KTH’s procedure for awarding degrees is described in the KTH regulations. The Master’s degree is awarded after fulfilling all requirements defined by the program. This includes a total of 120 credits out of which 90 credits are at the advanced level and at least 60 credits (including 30 credits for the thesis work) corresponds to advanced level courses within the major subject of the program.

The name of the degree is “Teknologie Mastersexamen”, which in English translates to “Degree of Masters of Science (two years)”. The program name, Energy Innovation, is indicated on the diploma.

When the student has successfully completed the degree requirements of the degree-issuing institutions, the student obtains a nationally recognized degree from the institutions at which he/she successfully completed a part of the programme, thereby obtaining double or multiple degrees.

Students who completed part of the program at KTH and fulfill the degree requirements for KTH receive a degree from KTH.

An application for the degree must be filed by the student and should be directed to the EE educational office.

**Appendix 1 - Course list**
**Appendix 2 - Programme syllabus descriptions**
## Appendix 1: Course list

Master's Programme, Energy Innovation, 120 credits (TIETM), Programme syllabus for studies starting in autumn 2013

### Track, Nuclear Energy (NUEY)

#### Year 1

**Mandatory courses (38.0 Credits)**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ2405</td>
<td>Sustainable Power Generation</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2600</td>
<td>Nuclear Reactor Physics, Major Course</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2603</td>
<td>Radiation, Protection, Dosimetry and Detectors</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2702</td>
<td>Nuclear Reactor Technology</td>
<td>8.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2773</td>
<td>Nuclear Power Safety</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

**Recommended courses**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD2290</td>
<td>Reactor Chemistry</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2411</td>
<td>Renewable Energy Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2302</td>
<td>Nuclear Physics</td>
<td>8.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2604</td>
<td>Generation IV Reactors</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2605</td>
<td>Radiation Damage in Materials</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2701</td>
<td>Thermal-Hydraulics in Nuclear Energy Engineering</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2703</td>
<td>Nuclear Reactor Dynamics and Stability</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2704</td>
<td>Monte Carlo Methods and Simulations in Nuclear Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2772</td>
<td>Chemistry and Physics of Nuclear Fuels</td>
<td>8.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2774</td>
<td>Numerical Methods in Nuclear Engineering</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

**Supplementary information**
At least 4 of the recommended elective courses should be selected.

**Track, Renewable Energy (RENE)**

**Year 1**

**Mandatory courses (63.0 Credits)**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ1402</td>
<td>Introduction to Energy Technology</td>
<td>3.0 hp</td>
<td>First cycle</td>
</tr>
<tr>
<td>MJ1432</td>
<td>Practical Energy Related Project</td>
<td>9.0 hp</td>
<td>First cycle</td>
</tr>
<tr>
<td>MJ2405</td>
<td>Sustainable Power Generation</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2407</td>
<td>Sustainable Energy Utilisation</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2411</td>
<td>Renewable Energy Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2413</td>
<td>Energy and Environment</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2424</td>
<td>Computational Methods in Energy Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2492</td>
<td>Advanced Renewable Energy Systems Technology</td>
<td>15.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

**Conditionally elective courses**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ2424</td>
<td>Computational Methods in Energy Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2429</td>
<td>Turbomachinery</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2470</td>
<td>Climate Change Mitigation Tools</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2473</td>
<td>Energy Policy Design</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2495</td>
<td>Experimental Energy Technology</td>
<td>8.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

**Supplementary information**

Choice one of the conditionally elective courses: MJ2473, MJ2495, MJ2429, MJ2470, MJ2424
Track, Smart Electrical Networks and System (SENS)

Year 2

Mandatory courses (6.0 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI2436</td>
<td>Power Grid Technology and Substation Design</td>
<td>6.0 hp Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG2200</td>
<td>Power Generation Operation and Planning</td>
<td>6.0 hp Second cycle</td>
</tr>
<tr>
<td>EG2340</td>
<td>Wind Power Systems</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EH2741</td>
<td>Communication and Control in Electric Power Systems</td>
<td>6.0 hp Second cycle</td>
</tr>
<tr>
<td>EI2402</td>
<td>Electromagnetic compatibility</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EI2439</td>
<td>Power System Protection</td>
<td>6.0 hp Second cycle</td>
</tr>
<tr>
<td>EI2490</td>
<td>Seminar Course in Electrotechnical Design and High Voltage Equipment</td>
<td>1.5 hp Second cycle</td>
</tr>
<tr>
<td>EJ2420</td>
<td>Seminars in Electrical Machines and Power Electronics</td>
<td>1.5 hp Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information

Conditionally elective courses, select at least 24 credits.

Track, Smart Cities (SMCS)

Year 1

Mandatory courses (37.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG2021</td>
<td>Power System Analysis, part 1</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EH2740</td>
<td>Computer Applications in Power Systems, basic course</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EJ2300</td>
<td>Power Electronics</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>MJ2682</td>
<td>Applied Environmental System Analysis</td>
<td>6.0 hp Second cycle</td>
</tr>
<tr>
<td>MJ2686</td>
<td>Smart Cities and Climate Mitigation Strategies, Larger Course - Project Based</td>
<td>9.0 hp Second cycle</td>
</tr>
</tbody>
</table>

Recommended courses
### Course code | Course name | Credits Edu. level  
---|---|---  
EG2040 | Wind Power Systems | 7.5 hp Second cycle  
EG2050 | System Planning | 7.5 hp Second cycle  
EG2110 | Power System Stability and Control | 7.5 hp Second cycle  
EJ2200 | Electrical Machines and Drives | 7.5 hp Second cycle  
EJ2400 | Electric Traction | 6.0 hp Second cycle  
MJ2630 | Waste Management, Advanced Course | 6.0 hp Second cycle  
MJ2663 | Environmental Management | 6.0 hp Second cycle  

**Supplementary information**

At least 3-4 (22.5 cr.) of the recommended elective courses should be selected.

**Year 2**

**Mandatory courses (43.5 Credits)**

| Course code | Course name | Credits Edu. level  
---|---|---  
EI2600 | Innovation and Entrepreneurship in Electric Power Engineering | 6.0 hp Second cycle  
MJ2685 | Smart Cities and Climate Mitigation Strategies- Project Based | 7.5 hp Second cycle  
MJ273X | Degree Project in Industrial Ecology, Second Cycle | 30.0 hp Second cycle  

**Recommended courses**

| Course code | Course name | Credits Edu. level  
---|---|---  
AF2507 | Sustainable Buildings - Concept, Design, Construction and Operation | 7.5 hp Second cycle  
AG2116 | City Networks in Regional Contexts | 7.5 hp Second cycle  
AG2143 | Sustainable Rural and Urban Development | 7.5 hp Second cycle  
AG2806 | Environmental Aspects of the Built Environment | 7.5 hp Second cycle  
AL2181 | Environmental System Analysis and Decision-making | 7.5 hp Second cycle  
AL2191 | Technology and Sustainable Development | 7.5 hp Second cycle  
EG2210 | Electricity Market Analysis | 7.5 hp Second cycle  
EG2320 | Power Systems and Environment | 3.0 hp Second cycle  
MJ2615 | Introduction to Industrial Ecology, larger course | 7.5 hp Second cycle  

**Supplementary information**

For students starting year 2 in the fall of 2013-14

At least 3-4 (16.5 cr) of the recommended elective courses should be selected
Appendix 2: Specialisations

Master's Programme, Energy Innovation, 120 credits (TIETM), Programme syllabus for studies starting in autumn 2013

Track, Nuclear Energy (NUEY)

This specialization deals nuclear energy engineering. The track is run in close collaboration with industrial partners and provides the latest trends in innovation in nuclear energy.

Track, Renewable Energy (RENE)

This specialization focuses on the renewable technologies where the partners of KIC InnoEnergy excel, such as wind energy, concentrated solar thermal power, solar photovoltaic energy, ocean energy, hydro power and geothermal energy.

Track, Smart Electrical Networks and System (SENS)

This education takes a starting point in the traditional education around electric power engineering, but turns its focus towards the electric power grid of the future -that is 'smart grids' - and how new concepts and ideas can lead to innovations within the framework of smart electrical networks and systems (smart grids).

Track, Smart Cities (SMCS)

This specialization deals with the concepts of “Smart Cities” based on scientific literature and reports from case studies.