Till innehåll på sidan
Till KTH:s startsida

Models and Algorithms for Addressing Challenges in Online Social Networks

Tid: To 2025-06-12 kl 14.00

Plats: F3 Flodis, Lindstedtsvägen 26

Videolänk: https://kth-se.zoom.us/j/68652985718

Språk: Engelska

Ämnesområde: Datalogi

Respondent: Sijing Tu , Teoretisk datalogi, TCS

Opponent: Associate Professor Johan Ugander, Stanford University

Handledare: Professor Aristides Gionis, Teoretisk datalogi, TCS; Associate Professor Per Austrin, Teoretisk datalogi, TCS

Exportera till kalender

QC 20250514

Abstract

Sociala nätverksplattformar såsom Facebook och X (tidigare Twitter) underlättar bekväm tillgång till nyheter och diskussioner, samt möjliggör för individer att uttrycka sina åsikter i samhällsfrågor. Under de senaste åren har ett flertal utmaningar uppstått då dessa plattformar medför betydande samhällsproblem, såsom ökad politisk polarisering samt spridning av desinformation och missinformation. Illasinnade aktörer har utnyttjat dessa plattformar för att rikta sig mot sårbara individer och manipulera det innehåll de exponeras för i avgörande samhällsfrågor. Därtill har algoritmiska mekanismer som implementerats av plattformarna, såsom informationsfiltrering och personligt anpassade nyhetsflöden, bidragit till skapandet av så kallade filterbubblor. Dessa filterbubblor begränsar individers exponering för olika perspektiv och förstärker redan existerande fördomar i samhällsfrågor.

Denna avhandling syftar till att fördjupa vår förståelse för de framväxande utmaningarna med sociala nätverksplattformar genom att konceptualisera dem som beräkningsmässiga problem. Vi undersöker det intrikata samspelet mellan informationsflöde, mänsklig interaktion och algoritmiska ingripanden, och väljer samt föreslår lämpliga modeller för att rama in dessa dynamiker. Vi omformulerar komplexa verkliga utmaningar till beräkningsproblem med precisa matematiska formuleringar. Därefter analyserar vi problemen ur komplexitetssynpunkt och utvecklar approximationsalgoritmer för att hantera dem.

Avhandlingen består av sex publikationer och är organiserad kring fyra forskningsområden. För det första undersöker vi kapaciteten hos illasinnade aktörer att förstärka politisk polarisering och förskjuta individers åsikter mot extrema ståndpunkter. De två tillhörande publikationerna behandlar scenarier där illasinnade aktörer antingen påverkar åsikterna hos en liten grupp individer eller har omfattande nätverkskopplingar. För det andra föreslår vi metoder för att motverka filterbubblor genom att öka individers exponering för mångsidig information, antingen genom virala marknadsföringskampanjer eller genom att justera exponeringen för ett litet antal individer. För det tredje analyserar vi effekten av virala marknadsföringskampanjer på opinionsbildningsprocessen och introducerar en modell som integrerar dynamiken i informationsspridning med opinionsbildning. För det fjärde presenterar vi ramverket OptiRefine för klassiska problem inom analys av sociala nätverk, såsom max-cut-problemet och det tätaste delgrafsproblemet. Ramverket definierar en klass av problem där en initial lösning ges, och målet är att identifiera en ny lösning som ligger nära den ursprungliga, men som optimerar fördefinierade målfunktioner såsom snittvärde eller delgrafsdensitet. Alla föreslagna metoder har noggrant utvärderats mot flera baslinjealgoritmer och heuristiker i samtliga publikationer.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-363348