Programme syllabus

Master's Programme, Innovative Sustainable Energy Engineering, 120 credits
Masterprogram, innovativ uthållig energiteknik
120.0 credits

Valid for students admitted to the education from autumn 09 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

Beyond the objectives which are specified in the Higher Education Degree Ordinance there are also specific goals for this programme. After completing the programme the student should:

Knowledge and understanding

- Have a broad, scientific foundation to be able to work within the energy engineering area. It should comprise knowledge about sustainable systems, energy sources and usage, and judgements of technical, economical, and environmentally-related consequences related to different energy re-usage processes.
- Show broad knowledge within this technical area, including knowledge in mathematics and natural science, and essentially deepened knowledge within certain parts of the area.

Skills and abilities

- Show a good ability to, independently as well as in a group, be able to apply knowledge and abilities in practical activities with regards to relevant scientific professional and social judgements and viewpoints.
- Show a good ability to analyse, formulate, and handle technical problems from a system perspective, with an overview on their life-cycle, from idea/need to specification, development, maintenance and termination, and the ability to set conditions, decide necessary resource consumption and manage processes for problem solving and realisation.
- Possess individual and professional skills like languages, leadership, project management, and communication for work as an engineer in a leadership role or as a leader in a technical intensive company, or in order to be able to continue toward a research career.

Ability to make judgements and adopt a standpoint
• Have very good understanding that engineering-related problems are often complex, can be incompletely defined and sometimes contain conflicting goals and conditions.
• Be aware of the responsibility and the ethical viewpoints which can arise in connection with different technical, organisational, economical, ecological and social activities.

Extent and content of the programme

The programme consists of 120 higher education credits which corresponds to two years full time studies. The programme is mainly on the second level.

The programme is offered by six participating universities in the cooperation called Nordic 5 Tech.

Participating Universities in Nordic 5 Tech (N5T): KTH – Royal Institute of Technology, Stockholm, Sweden
Chalmers - Chalmers University of Technology, Gothenburg, Sweden
DTU - Technical University of Denmark, Lyngby, Denmark
NTNU - Norwegian University of Science and Technology, Trondheim, Norway
TKK – Helsinki University of Technology, Helsinki, Finland
Háskóli – University of Iceland, Reykjavik, Iceland has been invited to cooperate with N5T

Possible specialisation areas for the programme: Specialisations for semester 2:-
- Energy utilization (KTH)-
- Power generation (KTH)-
- Bioenergy (TKK)-
- TKK two (TKK)-
- Natural Gas Technology (NTNU)-
- Industrial Ecology (NTNU)-
- Wind Turbine Technology (DTU)-
- Electricity from Wind Turbines (DTU)-
- Energy economics, system and policy (Chalmers)-
- Combustion, heat transfer and thermal power engineering (Chalmers)-
- Geothermal Energy (Háskóli)-

Specialisations for semester 3:-
- Cooling (KTH)-
- Energy Management (KTH)-
- Fluid Machinery (KTH)-
- TKK 2010 fall (TKK)-
- Natural Gas Technology (NTNU)-
- Industrial Ecology (NTNU)-
- Wind Turbine Technology (DTU)-
- Electricity from Wind Turbines (DTU)-
- Energy economics, systems and policy (Chalmers)-
- Combustion, heat transfer and thermal power engineering (Chalmers)-
- Energy in buildings (Chalmers)-
- Geothermal Energy (Háskóli)

The language of instruction for the programme is English.

Eligibility and selection

In order to be eligible to apply to the master’s programme, a relevant higher education degree of at least 180 higher education credits, degree of bachelor in science or in engineering, or technical bachelor’s degree preferably within Mechanical Engineering, Chemical Engineering, Energy Engineering, where courses in engineering mechanics, applied thermodynamics and heat transfer is required. Other corresponding technical or natural scientific degrees on the first level can also give eligibility, providing that courses in engineering thermodynamics, heat transfer, fluid dynamics, mathematics and numerical methods are included. Other studies or work experiences are judged on the basis of the actual competences which are referred to.

A sound and documented knowledge of written and spoken English (equivalent to a minimum TOEFL score of 550 or IELTS score of 6.0 for non-native speakers) is required from all applicants.
The selection to the programme is based on the evaluation of the following criteria: university/higher education institute, courses relevance for the programme, grades, suggestion to the degree project, recommendation letters, work experience and references.

All applications will be handled by the KTH admission office. Reference to the local admission policy of Royal Institute of Technology’s (The KTH-Handbook 2, section 11.0-11.9).

Implementation of the education

Structure of the education

Structure of the programme

The studies start with a common semester with mandatory courses offered by KTH, and thereafter the students have the possibility to spend semester 2 and 3 at other universities. Students on the program must spend at least one full semester at each of two participating universities. A maximum of 3 different universities can be selected. The studies are ended with a fourth semester where the student performs a degree project during 5-6 months, supervised at the university of choice.

Options for research preparatory courses exist.

It is recommended that students aim to register for a summer internship course at one of the partner universities to get an even higher exposure to the partner universities. It is also recommended that students take language courses at the place of study. These will not be included in the Master Degree.

The academic year of higher education at KTH consists of 40 weeks divided in 4 periods, each one containing no less than 35 days of tuition followed by one week of examinations.

There are three re-examination-periods: in the beginning of January, after the spring semester and before the autumn semester.

For more information about the Academic Year, see http://www.kth.se/student/schema/1.1007?l=en_UK

Courses

The programme is course-based. Lists of courses are included in [appendix 1](#).

The programme is in course form. The courses which are given in the programme can be found in appendix 1. The student must register for the individual courses in the way each one of the partner universities decides.

The programme has various components related to research preparation. Among these it is required, at KTH, to follow a course on “Theory and methodology of science” to receive a degree from KTH.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.
Courses at KTH in first and second level are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances. Since the programme is a result of a cooperation agreement between KTH and five other Nordic universities other types of grading might also be used.

Conditions for participation in the programme

The students must apply (on a semester basis) for the courses they intend to follow. This application should be sent in not later than Nov 15 and May 15, respectively, during the Semesters 1, 2 and 3 (corresponding to studies during the Semesters 2, 3 and 4, respectively).

In order to be allowed to pass from Semester 1 to Semester 2 the students must have achieved at least 22 higher education credits by the end of the exam period in January and must have attempted to pass all the compulsory assignments (calculations, simulations, laboratory,) present in all courses. At least 80% of these compulsory assignments should have been passed.

To pass from Semester 2 to Semester 3, at least 50 higher education credits should have been achieved by the end of the exam period in August, all compulsory assignments should have been attempted and at least 80% of theses assignments should have been passed.

To pass from Semester 3 to Semester 4, at least 80 higher education credits, should have been achieved by the end of the exam period in January, all compulsory assignments should have been attempted and at least 90% of theses assignments should have been passed.

A student who do not fulfil these requirements must consult with the study counsellor. An individual study plan must be set-up. The main goal with the study plan is that the student should complete remaining courses/course-parts during the next study year. In the study plan, the remaining courses/course-parts and also suitable courses from the next study year are included. Special regard is taken to the prerequisites of the courses yet to be taken.

Specialisation Selection The selection of specialisation is carried out in the form of the course selection before the second term starts. There is no limitation to the number of places available.

Recognition of previous academic studies

Credits from courses taken at another university/higher education institution both in Sweden and abroad, can, under certain circumstances be counted as part of the program. Student wishing recognition of previous academic studies must submit an application to the Programme Committee.

Reference to policy for recognition of previous academic studies at the Royal Institute of Technology (KTH-Handbook 2, section 13.3).

The application form can be found on the KTH website.

Degree project

The degree project corresponds to 30 ECTS.
To start the degree project at least 80 ECTS course credits should have been achieved, all compulsory assignments should have been attempted and at least 90% of theses assignments should have been passed (as described under "Conditions to participate in the educational program" above).

In order to fulfil requirements for obtaining a master degree the project must be part of the required in-depth studies at second level in the main field of study for the programme. The topic of the project must be accepted by the Programme Committee.

The project can be performed either at an industry, community, agency or at one of the partner universities.

The project course will be graded according to the scale A-F as all other courses.

The partner universities might have special requirements for the degree project.

Reference to rules for the degree project at the Royal Institute of Technology (KTH-Handbook 2, section 15.5).

Degree

Masterexamen - Degree of Master (Two Years) - is obtained after completion of the programme. The individual study-plan must be designed so that students, when they graduate, have fulfilled the Swedish national requirements for a degree and have completed courses comprising 120 higher education credits, of which:

- At least 90 higher education credits are at second level, of which at least 60 higher education credits (including a 30-higher education credit degree project) with in-depth studies in the main field of study.

This degree is entitled “Teknologie masterexamen” - Master of Science (Two Years). The text on the degree certificate states the name of the educational programme completed by the student besides the main field of study. Reference to local degree ordinance at the Royal Institute of Technology (Handbook 2, section 19.1). When all courses needed are completed and reported the student must personally apply for a degree certificate. This is done by filling in (the upper part of) the application form accompanied by an attested photocopy of the previous university degree (B.Sc. or a B. Eng, or equivalent).

Appendix 1 - Course list
Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Innovative Sustainable Energy Engineering, 120 credits (TIEEM), Programme syllabus for studies starting in autumn 2009

General courses

Year 1

Mandatory courses (48.0 Credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Edu. Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ1402</td>
<td>Introduction to Energy Technology</td>
<td>3.0 hp</td>
<td>First cycle</td>
</tr>
<tr>
<td>MJ2405</td>
<td>Sustainable Power Generation</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2407</td>
<td>Sustainable Energy Utilisation</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2409</td>
<td>Applied Energy Technology, Project Course</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2410</td>
<td>Energy Management</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2411</td>
<td>Renewable Energy Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2413</td>
<td>Energy and Environment</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Edu. Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ2412</td>
<td>Renewable Energy Technology, Advanced Course</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2422</td>
<td>Thermal Comfort and Indoor Climate</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2423</td>
<td>Applied Refrigeration and Heat Pump Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2426</td>
<td>Applied Heat and Power Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Year 2
Mandatory courses (13.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2030</td>
<td>Theory and Methodology of Science (Natural and</td>
<td>4.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td></td>
<td>Technological Science)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJ2424</td>
<td>Computational Methods in Energy Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2440</td>
<td>Measurement Techniques</td>
<td>3.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information

Those students who return to KTH to study their 3rd semester have to study the courses: MJ2440, MJ2424, AK2030.
Appendix 2: Specialisations

Master's Programme, Innovative Sustainable Energy Engineering, 120 credits (TIEEM), Programme syllabus for studies starting in autumn 2009

This programme has no specialisations.