Programme syllabus

Master's Programme, Electrophysics, 120 credits
Masterprogram, elektrofysik

120.0 credits

Valid for students admitted to the education from autumn 08 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

The master's programme in Electrophysics focuses on the foundations of electrical engineering: electromagnetic fields and their interaction with matter. Physical principles, mathematical methods, and numerical models make up the core of the programme, providing the tools and skills needed to describe electromagnetic processes and analyse complex systems and problems within the field. Specialised knowledge on relevant applications and systems is offered in the specialization courses, covering areas as antenna theory, propagation and damping of electromagnetic waves in various environments and geometries, plasma theory and applications, magnetohydrodynamics, fusion physics, space physics and technology. Programme graduates will be able to work with development, operation and evaluation of systems requiring good electrical engineering knowledge, or continue with research career in the field. The program sets forward a number of study objectives in terms of knowledge and understanding, skills and judgement.

Knowledge and understanding

For the master’s degree, the student should:

- have thorough knowledge about the scientific foundation and common practice of the electrical engineering
- be able to identify electrophysical problems in various technical systems and natural phenomena, and place them in a larger context
- be able to describe technological processes using mathematical models, and to assess the applicability and limitations of the models.

Skills and abilities

For the master’s degree, the student should:

- critically select and apply analytical and numerical methods to solve problems in electrophysics
- search and follow technical and scientific literature in electromagnetic theory and close fields
- communicate with various target groups in a professional way
- be able to plan, organize and document the work, and work together in a group.

Ability to make judgements and adopt a standpoint

For the master’s degree, the student should:

- be able to analyze electrical engineering problems with a holistic view of technological systems, in an independent manner acquire the information and knowledge that is necessary to establish a qualified opinion.
- have an insight into possibilities and limitations of technology, its role in society, and responsibilities for its application.
The programme provides the students with knowledge and skills that are needed to continue education to the PhD level, and are also attractive for the industry. The education can be a basis for continued studies at research level in electromagnetic field theory, plasma physics, space physics and fusion research, in which some of the courses can be included in the PhD course work. The objective is to give students maximum freedom to choose the courses of the programme of most interest to them. As the students may come from different backgrounds, a set of obligatory courses is offered in the first year to provide a solid foundation in the field.

Extent and content of the programme

The programme is on the second level and has a duration of two years, it comprises 120 higher education credits (equivalent to 120 ECTS). The language of instruction throughout the programme is English.

Eligibility and selection

Basic eligibility requirements for second cycle education are given in the admission policy of the Royal Institute of Technology (see KTH-handbook).

Basic admission requirements

Basic eligibility to be accepted to the master’s program requires a completed Bachelor's degree, corresponding to a Swedish Bachelor's degree (180 higher education credits), or equivalent academic qualifications with at least 60 ECTS credits of course work in electrical engineering or physics from an internationally recognised university. Students should have in addition, good knowledge in English, oral and written, is required. Applicants must provide proof of their proficiency in English. Specific admission requirements for Electrophysics are:

- at least 30 ECTS credits of course work in mathematics including calculus, vector algebra, differential equations, numerical methods
- courses in basic electromagnetics and mechanics

The specific eligibility requirements can be assessed as not-fulfilled if: 1. the average grade is less than 75% of the highest grade.
2. the degree awarding institution is not considered to meet acceptable quality standards by the authorities of the country in which the institution is located.
3. the degree does not qualify for admission to equivalent Master level in the country where the degree is awarded. The selection process for Electrophysics is based on a total evaluation of the following criteria: university ranking and grade point average, personal motivation, letters of recommendation, course work and professional experience related to the programme.

Implementation of the education

Structure of the education

The education is laid out in two academic years. The study year for KTH’s undergraduate programme is divided into four periods. The study periods correspond to about seven weeks of studies with at least 33 study days. Every study period is followed by an exam period consisting of two dispensable days and at least five exam days. Partitioning of the academic year is described in the KTH-handbook and student web page.

Courses

The programme is course-based. Lists of courses are included in appendix 1.

The programme is course-based, and consists of obligatory courses, specialisation courses, elective courses and degree project. List of courses are included in appendix 1.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.
Courses are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

Conditions for participation in the programme

No later than November 15 and May 15 each academic year, respectively, the students are required to make a study registration. In order to be registered for elective courses in Term 3, you must have completed at least 45 ECTS of course work.

Recognition of previous academic studies

According to current legislation a student who has some university level education with approved result has the right for this education to be credited for corresponding education at a different university. The Director of undergraduate studies at the School of Electrical Engineering takes decision on recognition of complete courses. More information on recognition of previous education is available in KTH-handbook: www.kth.se/info/kth-handboken/II/13/3.html

Studies abroad

Exchange studies for course work abroad is not available. The Degree project (Master’s Thesis project) can be performed abroad providing the student has an advisor at KTH and one at the receiving institution and that the work follows the KTH regulations for a Thesis project.

Degree project

Degree project corresponds to 30 credit units. In general, the obligatory courses must be completed before the degree project can be started. The degree project is normally carried out individually, and the subject is in normal cases a specialization in the field a student studies for. The programme coordinator can in some cases agree for the degree project to be carried our by two students, in which case individual work by each student should be clearly defined. The degree project is graded on the A-F scale, based on the KTH evaluation criteria: content, process and presentation. More details and conditions applicable to the degree project are found in the KTH-handbook.

Degree

Students who have successfully completed a two-year Master's programme (120 ECTS) will be awarded a "Teknologie masterexamen", translated into English as "Degree of Master of Science (two years)". The programme has following conditions for the degree:

1. a total of 90 credits of completed courses from the course list
2. courses in the obligatory block must have been successfully completed
3. at least three specialisation courses must be included
4. a degree project of 30 higher education credits.

The local degree policy at KTH is described in detail in the KTH-handbook: www.kth.se/info/kth-handboken/II/19/1.html

Appendix 1 - Course list
Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Electrophysics, 120 credits (TELFM), Programme syllabus for studies starting in autumn 2008

General courses

Year 1

Mandatory courses (28.5 credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EF2200</td>
<td>Plasma Physics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2405</td>
<td>Classical Electrodynamics</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2433</td>
<td>Electrotechnical Modelling</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN2220</td>
<td>Applied Numerical Methods I</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>ED2200</td>
<td>Energy and Fusion Research</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>ED2210</td>
<td>Electromagnetic Processes in Dispersive Media</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2400</td>
<td>Applied Antenna Theory</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SI2361</td>
<td>Advanced Mechanics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Year 2

Optional courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF2260</td>
<td>Space Environment and Spacecraft Engineering</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EH2720</td>
<td>Management of Projects</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2420</td>
<td>Electromagnetic Wave Propagation</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>Course code</td>
<td>Course name</td>
<td>Credits</td>
<td>Edu. level</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>EI2430</td>
<td>High-voltage Engineering</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2440</td>
<td>Electrotechnical Design</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EL2520</td>
<td>Control Theory and Practice, Advanced Course</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EL2620</td>
<td>Nonlinear Control</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EQ1220</td>
<td>Signal Theory</td>
<td>7.5</td>
<td>First cycle</td>
</tr>
<tr>
<td>IT2651</td>
<td>Microwave Engineering</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2401</td>
<td>Stellar Structure and Evolution</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2402</td>
<td>Astrophysics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2400</td>
<td>Quantum Electronics with Electro Optics</td>
<td>12.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN2274</td>
<td>Computational Electromagnetics</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>ED2220</td>
<td>Experimental Fusion Plasma Physics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>ED2230</td>
<td>Chaos and Self-organization</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EF2215</td>
<td>Plasma Physics II</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EF2230</td>
<td>Experimental Techniques in Space Plasma Physics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EF2240</td>
<td>Space Physics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EF2245</td>
<td>Space Physics II</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EF2270</td>
<td>Applied Plasma Physics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2402</td>
<td>Electromagnetic compatibility</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2410</td>
<td>Field Theory for Guided Waves</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SH2771</td>
<td>Spacecraft Dynamics</td>
<td>9.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>
Appendix 2: Specialisations

Master's Programme, Electrophysics, 120 credits (TELFM), Programme syllabus for studies starting in autumn 2008

This programme has no specialisations.