Programme syllabus

Master's Programme, Electric Power Engineering, 120 credits
Masterprogram, elkraftteknik
120.0 credits

Valid for students admitted to the education from autumn 08 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

Knowledge and understanding

For the Master’s Degree, the student should:§ have a thorough understanding of and high competence in electrical engineering principles, electrical energy systems, electrical machines and power electronics, electro-technical design and power system control and operation§ have knowledge and understanding of current theories and developments in electrical power engineering§ have a thorough knowledge and understanding of the concepts in the philosophy and methodology of science to analyse, criticise and report on scientific information from published sources.

Skills and abilities

For the Master’s Degree, the student should be able to:§ independently apply mathematics and natural science to the electric power engineering§ to employ a range of techniques and modern electric power engineering tools to identify, analyse and solve the electric power engineering problems in professional and research environments§ effectively communicate and function in a team.

Ability to make judgements and adopt a standpoint

For the Master’s Degree, the student should:§ show insight into the role of electric power engineering in society, economy and environment§ show awareness of ethical aspects in research and development work§ show independent learning ability for continuing professional development. Information on the degree requirements can be found in the local degree policy of KTH at: http://www.kth.se/info/kth-handboken/I19/1bilagaengelska.html

Extent and content of the programme
The programme lasts for two academic years (120 higher education credits) on the advanced level (second cycle). The language of instruction throughout the programme is English.

Eligibility and selection

Basic admission requirements Basic eligibility to be accepted to the master’s programme requires a completed Bachelor's degree, corresponding to a Swedish Bachelor's degree (180 higher education credits), or equivalent academic qualifications from an internationally recognised university. The university has to be listed in the latest edition of the International Handbook of Universities. Students should have in addition, good knowledge in English, oral and written, is required. Applicants must provide proof of their proficiency in English. **Specific admission requirements** Specific eligibility to the programme requires:

- electrical engineering equivalent to 60 higher education credits
- mathematics (calculus, numerical methods, algebra, probability theory) equivalent to at least 30 higher education credits.

The specific eligibility requirements can be assessed as not-fulfilled if: 1. the average grade is less than 75% of the highest grade 2. the degree awarding institution is not considered to meet acceptable quality standards by the authorities of the country in which the institution is located 3. the degree does not qualify for admission to equivalent Master level in the country where the degree is awarded. **Selection process** The selection process for Electric Power Engineering is based on a total evaluation of the following selection criteria: University, GPA, motivation letter, working experiences relevant to the programme and references. Information on the eligibility requirements can be found in the local admission policy of KTH at http://www.kth.se/studies/master/admission?

Implementation of the education

Structure of the education

The programme lasts for two academic years. At KTH, the academic year is divided into two terms. The autumn term starts in late August and runs until the middle of January. The spring term begins in the middle of January and runs until the end of May/the beginning of June. The Christmas break is two weeks and the Easter break one week. Specific dates may be found at http://www.kth.se/studies/calendar?

Each term consists of two study periods. Each study period comprises seven weeks of scheduled tuition such as lectures, laboratory lessons, etc., followed by one week of examinations free from scheduled tuition. There are also re-examination periods in January, June and in August. The programme offers six compulsory courses (45 higher education credits), five of which will be given in the first year, and the remaining one in the second year. The elective courses may be selected in both first and second year.

Courses

The programme is course-based. Lists of courses are included in appendix 1.
The programme is course-based. Lists of courses are included in appendix 1. The number of credits of elective courses must be at least 45 higher education credits. Only the elective courses from the list in appendix 1 can be selected.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

All courses are graded on a scale from A to F. A-E are passing grades, A is the highest grade.

Conditions for participation in the programme

For promotion to study year two, the student must have received at least 45 higher education credits from the first year. No later than November 15 and May 15 each academic year, respectively, the students are required to make a study registration. The elective courses given in Term 1 must be selected by Monday, Week 40, Term 2 must be selected by Monday, Week 47, Term 3 must be selected by Monday, Week 21.

Recognition of previous academic studies

Under certain circumstances, and in agreement with the programme director, credits for previous studies can be received according to the local policy of KTH, see http://www.kth.se/info/kth-handboken/II/13/3.html

Degree project

The final degree project is worth 30 higher education credits, and corresponds to five months of full-time study. It may be carried out either at KTH or in industry. The project is summarised in a written report, and finally presented at a seminar. The project work can begin if:

- the student has an agreement with an examiner,
- the student has completed 30 higher education credits worth of compulsory courses, and 37.5 higher education credits of elective courses,
- the student has completed the courses relevant to the project subject.

More information on the KTH policy on the degree project can be found at http://www.kth.se/info/kth-handboken/II/15/5.html

Degree

To graduate with a master’s degree, a master’s degree student must meet the following degree requirements:

- all compulsory courses (45 higher education credits) have been successfully completed,
- elective courses corresponding to at least 45 higher education credits have been successfully completed,
- the final degree project (30 higher education credits) has been successfully completed.

In addition to the requirements stated above, a master’s degree student must submit
• the original certificate from previous education (Bachelor’s or similar),
• a proof that all financial obligations (student union fee) to KTH have been met.

Degree names Students who have successfully completed a two-year Master's programme (120 ECTS) will be awarded a "Teknologie masterexamen", translated into English as "Degree of Master of Science (two years)". More information on the degree requirements can be found in the local admission policy of KTH at http://www.kth.se/info/kth-handboken/II/19/1x.html

Appendix 1 - Course list
Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Electric Power Engineering, 120 credits (TELPM), Programme syllabus for studies starting in autumn 2008

General courses

Year 1

Mandatory courses (37.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG2020</td>
<td>Power Systems, Basic Course</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EH2710</td>
<td>Power System Control and Operation</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2433</td>
<td>Electrotechnical Modelling</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EJ2200</td>
<td>Electrical Machines and Drives</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EJ2300</td>
<td>Power Electronics</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Optional courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG2040</td>
<td>Wind Power Systems</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EG2050</td>
<td>System Planning</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EG2060</td>
<td>Electricity Market Analysis</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2430</td>
<td>High-voltage Engineering</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EI2440</td>
<td>Electrotechnical Design</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EJ2210</td>
<td>Analysis of Electrical Machines</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information

Optional courses for both first and second year;

- EG2030 Power system advanced course
- EH2730 Requirements engineering
EI2451 Reability assessment of electrical power

EJ2310 Modulation of power electronic converters

EJ2420 Seminars in electrical machines and power

EL2620 Non-linear control

Year 2

Mandatory courses (7.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications
(Natural and Technological Science)</td>
<td>7.5 hp Second cycle</td>
</tr>
</tbody>
</table>

Optional courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG2030</td>
<td>Power Systems, Advanced Course</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EG2070</td>
<td>FACTS and HVDC in Electric Power Systems</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EH2720</td>
<td>Management of Projects</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EH2730</td>
<td>Requirements Engineering</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EJ2221</td>
<td>Design of Permanent Magnet Synchronous Machines</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EJ2311</td>
<td>Modulation of Power Electronic Converters</td>
<td>6.0 hp Second cycle</td>
</tr>
<tr>
<td>EJ2420</td>
<td>Seminars in Electrical Machines and Power Electronics</td>
<td>1.5 hp Second cycle</td>
</tr>
<tr>
<td>EL2620</td>
<td>Nonlinear Control</td>
<td>7.5 hp Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information

Optional courses for both first and second year;

EG2030 Power system advanced course

EJ2310 Modulation of power electronic converters

EJ2420 Seminars in electrical machines and power

EL2620 Non-linear control
Appendix 2: Specialisations

Master's Programme, Electric Power Engineering, 120 credits (TELPM), Programme syllabus for studies starting in autumn 2008

This programme has no specialisations.