Programme syllabus

An accessible version of the syllabus can be found in the Course and programme directory.

Master's Programme, Industrial and Environmental Biotechnology 120 credits

Masterprogram, Industriell och miljöinriktad bioteknologi

Valid for students admitted to the education from autumn 10 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

Knowledge and understanding

After completing the *Industrial and Environmental Biotechnology* programme the students should:

- be able to design central parts in bioprocesses both in the industrial and the environmental setting.
- understand processes at both molecular- and cell level.
• have subject knowledge to a level which promotes a future career including research education.

• be able to communicate with colleagues in the various subject areas of Biotechnology.

• have in-depth knowledge in a chosen Biotechnology subject area.

• understand the driving forces, organization and management of Swedish and International Biotech industry.

Skills and abilities

After completing the Industrial and Environmental Biotechnology programme the students should:

• be able to critically read and extract information from various sources, formulate conclusions and integrate this into the design work.

• know how to analytically and critically plan, execute and evaluate experiments.

• be able to use standard and advanced biotechnology methods and techniques.

• be skillful in technical communication both in oral and written form.

Ability to make judgements and adopt a standpoint

After completing the Industrial and Environmental Biotechnology programme the students should:

• critically evaluate existing and new technology breakthroughs in the biotech society.

• use biotechnology methods, products and processes in a responsible way.

• understand the impact of biotechnology developments on social, ethical and gender level.

• understand the implications of Biotechnology development in the context of a sustainable society.

Extent and content of the programme

Industrial and Environmental Biotechnology is a two-year (120 higher education credits) master programme on the advanced level (second cycle). The instruction language is entirely in English. The programme consists of courses given by KTH.
Eligibility and selection

General admission requirements
A completed Bachelor’s degree - corresponding to a Swedish Bachelor’s degree (180 higher education credits), or equivalent academic qualifications from an internationally recognized university.
For more information, see
http://www.kth.se/studies/master/admission?l=en_UK

Language requirements – applicants must proof their proficiency in English, which is most commonly established through an internationally recognized test.
For more information, see
http://www.kth.se/studies/master/admission?l=en_UK

Documentation – for detailed information about list of required documents, see
“Admission requirements and selection” http://www.kth.se/studies/master/admission?l=en_UK

Specific admission requirements
In addition to the general admission requirements, the programme requires:

- Courses in biochemistry, microbiology and gene technology/molecular biology with a total of at least 20 higher education credits
- Courses in chemistry for at least 30 higher education credits
- Basic knowledge in mathematics, numerical analysis and computer science with a total of at least 20 higher education credits.

For more information, see Study at KTH, Master´s programmes at KTH, “Admission requirements”.
http://www.kth.se/studies/master/admission?l=en_UK

Selection process
The selection process for the Industrial and Environmental Biotechnology programme is based on a total evaluation of the following criteria: university, grade point average (GPA), courses relevant to the programme, motivation letter, relevant work experience, references and english proficiency.

If seats remain after admission based on the criteria mentioned above, the grade requirement in English will be reduced until the correct number of admitted students is reached.

Complete information on the eligibility requirements can be found in the local admission policy of KTH, see:
http://intra.kth.se/regelverk/utbildning-forskning/grundutbildning/antagning/1.27192
Implementation of the education

Structure of the education

The academic year at KTH has a duration of 40 weeks and is divided into four study periods, where two or three courses are simultaneously studied in each period. The nominal study pace is 60 higher education credits each academic year.

The mandatory courses comprise 43,5 higher education credits during the first academic year and 40 higher education credits (of which the degree project, second level is 30 higher education credits) during the second academic year. There is also a conditionally elective course (7,5 higher education credits) during the second year. The rest of the higher education credits to reach 120 can freely be chosen by the student. The list of courses in appendix 1 contains a group of recommended courses which the students are encouraged to choose from.

Courses

The programme is course-based. Lists of courses are included in appendix 1.

Teaching and examination methods vary between courses. Commonly, the concepts and theory of a subject is taught through lectures. Exercises, seminars and laboratory sessions aim to emphasize and deepen the understanding of the most important aspects of a subject. The programme is concluded with a degree project, advanced level equivalent to 30 higher education credits. To receive a Degree of Master of Science (Two Years), the students should have passing grades in all the mandatory and optional courses, which including the thesis will comprise 120 higher education credits.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

Conditions for participation in the programme

The students are required to make a study registration and course selection for the coming term no later than November 15 and May 15 each academic year, respectively. At least 45 higher education credits have to be completed during the first academic year (including the re-examination period in August) in order for the student to be promoted to the second year of the programme.
Students who have not passed 45 credits in the first year must contact the educational coordinator for an individual study plan, otherwise the student will not be registered on any courses in the upcoming academic year. This study plan will include residual courses and appropriate courses for the upcoming year.

Recognition of previous academic studies

The students have the right to transfer higher education credits from previous studies at universities in or outside of Sweden. The courses have to be at a level and include contents that agree with the goals of the programme. Transfer of higher education credits are decided by the director of undergraduate and Masters’ studies.

For more information see:
http://intra.kth.se/regelverk/utbildning-forskning/grundutbildning/prestationer/1.27200

Studies abroad

For information about studies abroad, contact the international coordinator at the School of Biotechnology.

Degree project

Students admitted to the programme are required to perform an individual study in the form of a degree project corresponding to 30 credits. The main portion of the studies must be completed before the start of the degree project, specifically those related to the mandatory courses of the programme. This means that at least 60 credits (of which 30 must be in the second cycle within the main field of study) have to be completed before the start of the degree project.

The purpose of the degree project is for the student to demonstrate the ability to perform an independent project, using skills obtained during the courses in the programme. It is the student's responsibility to find a suitable thesis project, with assistance from KTH.

Degree project, advanced level for the Degree of Master of Science, Biotechnology, can be performed in the following exam topics:

Biotechnology.

Other degree projects in related fields may also be allowed, but need approval by the Director of Undergraduate and Masters’ studies at the School of Biotechnology.

For more information, contact the study advisor at the BIO students office.

Grading of the degree project is done by a seven step goal-related grading system (A to F), where A-E are passing grades and A is the highest. The grade is based on three evaluation criteria:
• the process of planning and performing the degree project within the given timeframe.

• the use of engineering approach and skills when performing the degree project.

• the oral and written presentation of the degree project.

More information on the KTH policy on the degree project can be found at:

Degree

Master of Science (120 credits) - is obtained after completion of the Industrial and Environmental Biotechnology programme. The programme is designed so that students, when they graduate, have fulfilled Swedish national requirements for a degree and have completed courses comprising 120 higher education credits, of which:

• at least 90 higher education credits are at second cycle, of which at least 60 higher education credits (including the 30 higher education credit degree project) are in-depth studies in the main field of the programme.

Students must apply for the degree at the student office and are required to show proof of their basic degree (Bachelor or similar) and that they have paid the student union fee.

Degree name
Master of Science (120 credits)
Teknologie masterexamen

Appendix 1 - Course list
Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Industrial and Environmental Biotechnology (TIMBM)

General courses

Year 1

Mandatory courses (43.5 Credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2020</td>
<td>Molecular Enzymology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2450</td>
<td>The Cell Factory</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2460</td>
<td>Biocatalysis</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2480</td>
<td>Energy and Environment</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>ME1000</td>
<td>Industrial Management</td>
<td>6.0 hp</td>
<td>First cycle</td>
</tr>
</tbody>
</table>
Recommended courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2008</td>
<td>Ethics of Biotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB1120</td>
<td>Cultivation Technology</td>
<td>6.0 hp</td>
<td>First cycle</td>
</tr>
<tr>
<td>BB2160</td>
<td>Structure Biology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2170</td>
<td>Drug Development</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2280</td>
<td>Molecular Modeling</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2330</td>
<td>Plant Biotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2420</td>
<td>Glycobiology and Carbohydrate Technology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2500</td>
<td>Academic Transition at Master Level</td>
<td>1.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KD2310</td>
<td>Advanced Organic Chemistry</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KD2320</td>
<td>Spectroscopic Tools for Chemistry</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>ME2806</td>
<td>From Science to Business</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2613</td>
<td>Sustainable Development</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information

Study year 1 consists of mandatory courses and recommended courses.

Year 2

Mandatory courses (45.0 Credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB203X</td>
<td>Degree Project in Industrial Biotechnology, Second Cycle</td>
<td>30.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2520</td>
<td>Bioprocess Design</td>
<td>15.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE2320</td>
<td>Process Design for Industry and Society</td>
<td>15.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2680</td>
<td>Environmental Systems Analysis</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>
Recommended courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2008</td>
<td>Ethics of Biotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2010</td>
<td>Environmental Toxicology</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2280</td>
<td>Molecular Modeling</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>BB2420</td>
<td>Glycobiology and Carbohydrate Technology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KD2310</td>
<td>Advanced Organic Chemistry</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KD2320</td>
<td>Spectroscopic Tools for Chemistry</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2624</td>
<td>Project in Environmental Technology</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2627</td>
<td>Environmental Technology, Larger Course</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2635</td>
<td>Environmental Modelling: Introduction and Application Examples</td>
<td>6.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information

Study year 2 consists of mandatory courses, conditionally elective and recommended courses, and ends with a degree project, second level, 30 credits.

Students must select one of the conditionally elective courses KE2320 or MJ2680.
Appendix 2: Specialisations

Master's Programme, Industrial and Environmental Biotechnology (TIMBM)

This programme has no specialisations.