Programme syllabus

Master's Programme, Chemical Engineering for Energy and Environment, 120 credits
Masterprogram, kemiteknik för energi och miljö
120.0 credits

Valid for students admitted to the education from autumn 10 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

Knowledge and understanding

To receive a Master of Science degree in Chemical Engineering for Energy and the Environment the student should:

- demonstrate general knowledge and understanding in chemistry and chemical engineering and in-depth knowledge in a selected chemical engineering area.
- have insight into current research and development in chemical engineering, and its application to sustainable development.
- demonstrate knowledge of the scientific basis for physical and chemical processes, different kinds of energy and their conversion, the properties and use of different material, and to assess the applicability of the used models in different contexts.
- demonstrate knowledge of the importance of chemical, thermodynamic and kinetic aspects of chemical reaction and process routes.
- be able to apply knowledge of mathematics, numerical analysis and other sciences in chemistry field.

Skills and abilities

To receive a Master of Science degree in Chemical Engineering for Energy and the Environment the student should:

- demonstrate the ability to develop chemical products and to design, operate and control the processes by applying a systematic thinking in terms of raw materials, energy, security, environment, economy, human conditions and needs, and goals of society for sustainable development.
- demonstrate the ability to identify, formulate and manage current and real problems drawn from industry, society and research, taking into account the potential and limitations.
- demonstrate the ability to make assessment of the reasonableness of the obtained solutions, and compare and evaluate alternative solutions.
- demonstrate laboratory skills and knowledge of safe chemical managing, and the ability to implement and evaluate experiments on a laboratory scale and on a larger scale plan.
- demonstrate the skills to use computer tools for simulation, technical calculations and information retrieval.
- demonstrate the ability to orally and in writing, in Swedish and English, present and discuss ideas and outcomes and communicate with persons with or without the technical- scientific background.
- demonstrate ability to effectively work as a team and plan and implement projects within a given framework.
Ability to make judgements and adopt a standpoint
To receive a Master of Science degree in *Chemical Engineering for Energy and the Environment* the student should:

- demonstrate the ability to critically review the literature and technologies in areas related to Chemistry and Chemical Engineering.
- demonstrate the ability to take a stand on issues of ethical nature in their professional field.
- demonstrate an understanding for the fact that chemistry and chemical engineering problems can be complex, incompletely defined and contain contrarious conditions, and also consider social, economic, commercial, environmental and working-environmental aspects.
- demonstrate the ability to rapidly acquire knowledge in new areas and to apply new knowledge for innovation and development of chemical products and chemical engineering processes.

Extent and content of the programme
Chemical Engineering for Energy and the Environment is a two-year (120 higher education credits) master programme on the advanced level (second cycle). The instruction language is entirely English. The programme consists of courses given by KTH, mainly by the School of Chemical Science and Engineering.

Eligibility and selection

General admission requirements
A completed Bachelor's degree - corresponding to a Swedish Bachelor's degree (180 higher education credits), or equivalent academic qualifications from an internationally recognised university.
For more information, see http://www.kth.se/studies/master/admission?l=en_UK

Language requirements – applicants must prove their proficiency in English, which is most commonly established through an internationally recognised test.
For more information, see http://www.kth.se/studies/master/admission?l=en_UK

Documentation – for detailed information about list of required documents, see “Admission requirements and selection” http://www.kth.se/studies/master/admission?l=en_UK

Specific admission requirements
In order to be admitted to the *Chemical Engineering for Energy and the Environment* programme, a Bachelor's degree in Chemistry or closely related subject, of 180 higher education credits, including the following is required:

- Courses in chemistry and chemical engineering or closely related subject for at least 75 higher education credits, of which at least 22,5 higher education credits in chemical engineering.
- Basic knowledge in mathematics for at least 20 higher education credits.
- Basic knowledge in numerical analysis/computer science for at least 9 higher education credits.

Selection process
The selection process for the Chemical Engineering for Energy and the Environment programme is based on a total evaluation of the following selection criteria: university, grade point average (GPA), course work related to the programme, motivation letter and relevant work experience, references and English proficiency.

Complete information on the eligibility requirements can be found in the local admission policy of KTH, see: http://intra.kth.se/regelverk/utbildning-forskning/grundutbildning/antagning/1.27192
Implementation of the education

Structure of the education

The academic year has a duration of 40 weeks. The academic year at KTH is divided into four periods. Each period lasts approximately seven weeks and is followed by an examination period.

The programme consists of courses for 90 higher education credits followed by a degree project on advanced level (30 higher education credits). One mandatory course (7.5 higher education credits) is included the first year. The rest of the courses are conditionally elective or elective. The student is required to choose at least 3 courses listed as conditionally elective. The remaining courses should be selected from the courses listed as conditionally elective or recommended with the exception of 15 higher education credits that can be chosen freely outside the list. This gives the student a great opportunity to create his/her own curriculum. Guidelines and recommendations for course combinations will be given.

Courses

The programme is course-based. Lists of courses are included in appendix 1.

The programme consists of mandatory, conditionally elective, recommended and elective courses. The goals, prerequisites, contents and examination requirements of different courses can be found in the respective course plans.

Two or three courses are usually studied in parallel during each period. Teaching and examination methods vary between the courses. Normally the course contains lectures, which give an introduction to the concepts and theory. Exercises, seminars, laboratory work and project assignments deepen the conceptual understanding, give practical experience and give possibility to practice the group skills.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

Conditions for participation in the programme

The students are required to make a study registration and course selection for the coming term no later than November 15 and May 15 each academic year, respectively. At least 45 higher education credits have to be completed during the first academic year (including the re-examination period in August) in order for the student to be promoted to the second year of the programme.

Students who have not passed 45 credits in the first year, must contact the educational coordinator for an individual study plan. This study plan will include residual courses and appropriate courses for the upcoming year. The student who has not done this will not be registered on any courses in the upcoming academic year.

Recognition of previous academic studies

Under certain circumstances, and in agreement with the programme director, credits for previous studies can be received according to the local policy of KTH, see http://intra.kth.se/regelverk/utbildning-forskning/grundutbildning/prestationer/1.27200

Studies abroad

For information about studies abroad, contact the international coordinator at the School of Chemical Science and Engineering

Degree project

Students admitted to the programme are required to perform an individual study in the form of a degree project, advanced level, corresponding to 30 credits. This means 20 weeks of fulltime studies. The main portion of the studies must generally be completed before the degree project work can be started. At least 60 credits must be completed where at least 30 credits in the second cycle within the main field of study.
The purpose of the thesis project is that the student demonstrates the ability to perform independent project work, using the skills obtained from the courses in the programme. It is the student’s responsibility to find a suitable thesis project, with assistance from KTH.

Degree project, advanced level for the Degree of Master of Science, Chemical Engineering for Energy and Environment, can be performed in the following exam topics:
Chemistry, Chemical engineering, Fibre and Polymer Technology.

Other degree projects in related fields may also be allowed, but need approval by the Director of Undergraduate and Masters’ studies at the School of Chemical Science and Engineering.
For more information, contact the study advisor at the CHE students office.

More information on the KTH policy on the degree project can be found at:

Degree

Master of Science (120 credits) - is obtained after completion of the Master (120 credits) Chemical Engineering for Energy and the Environment study programme. The programme is designed so that students, when they graduate, have fulfilled national requirements for a degree and have completed courses comprising 120 higher education credits, of which:

• At least 90 higher education credits are at second cycle, of which at least 60 higher education credits (including a 30-higher education credits degree project) with in-depth studies in the main field of study.

Students who fulfill all the requirements will be awarded a Master of Science (120 credits). Students must apply for the degree and also show proof of their basic degree (Bachelor or similar) and have paid the student union fee.

Degree name

Master of Science (120 credits)
Teknologe masterexamen

http://intra.kth.se/regelverk/utbildning-forskning/grundutbildning/examina/1.27227?l=en_UK
Appendix 1 - Course list
Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Chemical Engineering for Energy and Environment, 120 credits (TKEMM), Programme syllabus for studies starting in autumn 2010

General courses

Year 1

Mandatory courses (7.5 credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE2010</td>
<td>Industrial Energy Processes</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2040</td>
<td>Chemical Reaction Engineering</td>
<td>9.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2070</td>
<td>Transport Phenomena, Advanced Course</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2180</td>
<td>Separation Processes for the Process Industry and the Environment</td>
<td>9.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2680</td>
<td>Environmental Systems Analysis</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Recommended courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJ2410</td>
<td>Hybrid Vehicle Drives</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KA2010</td>
<td>Academic Transition at Master Level</td>
<td>1.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KD2430</td>
<td>Nuclear Fuel Cycle</td>
<td>9.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2050</td>
<td>Environmental Catalysis</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2060</td>
<td>Computational Project in Chemical Engineering</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2110</td>
<td>Applied Electrochemistry</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2130</td>
<td>Renewable Fuel Production Processes</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>Course code</td>
<td>Course name</td>
<td>Credits</td>
<td>Edu. level</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>KE2190</td>
<td>Experimental Process Design</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2300</td>
<td>Electrochemical Energy Devices</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>ME2800</td>
<td>Ideation - Creating a Business Idea</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2628</td>
<td>Environmental Technology, Advanced Course</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MJ2663</td>
<td>Environmental Management</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information
Study year 1 consists of one mandatory course, at least three of the conditionally elective courses and recommended courses.

Year 2

Mandatory courses (30.0 credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE202X</td>
<td>Degree Project in Chemical Engineering, Second Cycle</td>
<td>30.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Recommended courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD2380</td>
<td>Corrosion and Surface Protection</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KD2420</td>
<td>Environmental Aspects of Atmospheric, Aquatic and Terrestrial Chemistry</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2310</td>
<td>Sustainable Systems for Heat, Power and Materials Production</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2320</td>
<td>Process Design for Industry and Society</td>
<td>15.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KE2330</td>
<td>Sustainable Production of Pharmaceuticals</td>
<td>9.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KF2470</td>
<td>Pulp and Paper Processes</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information
Study year 2 consists of recommended courses and a mandatory degree project, second level, 30 higher education credits.
Appendix 2: Specialisations

Master's Programme, Chemical Engineering for Energy and Environment, 120 credits (TKEMM), Programme syllabus for studies starting in autumn 2010

This programme has no specialisations.