Programme syllabus

Master's Programme, Materials Science and Engineering, 120 credits
Masterprogram, materialteknik
120.0 credits

Valid for students admitted to the education from autumn 07 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

Beyond the objectives which are specified in the Higher Education Degree Ordinance, there are also specific goals for this programme. After completing the programme, the student should:

Knowledge and understanding

• Have a broad knowledge about materials as well as processes in order to be able to develop and manufacture new materials and products
• Have a deepened knowledge within the chosen specialisation
• Have knowledge such that he/she will be able to work within the material related industry within research /development as well as in production and manufacturing

Skills and abilities

• Be able to identify, formulate, analyse and solve problems with regards to current circumstances (scientific, engineer-related, and social) based on ethical and professional standpoints.
• Show developed abilities to synthesize and implement skills within materials as well as processes
• Have a good ability to utilize modern modelling and simulation methods and their applications
• Have skills in presentation and communication such that good prerequisites for efficient work are achieved individually as well as in a multinational group.

Ability to make judgements and adopt a standpoint

• Show a professional and ethical responsibility in scientific, technical, ecological and social activities.
• Have understanding that engineering-related problems, considered from a system perspective are often complex, can be incompletely defined and sometimes contain conflicting conditions.

Reference to the local degree ordinance of the Royal Institute of Technology (The KTH-Handbook).

Extent and content of the programme

The programme consists of 120 higher education credits which correspond to two years full time studies. The programme’s in mainly on the second level.
The programme has two specialisations, one for Materials Processing with course start in the spring term, and another for Materials and Process Design with course start in the fall term. The courses which are included in each specialisation can be found in Appendix 1.

The language of instruction for the programme is English.

Eligibility and selection

In order to be eligible to apply to the master’s programme, a higher education degree of at least 180 higher education credits technical bachelor’s degree, or another corresponding technical or natural scientific degree in the first level within physics, metallurgy, material science, machine engineering, or chemical engineering must be completed. Other studies or work experiences are judged on the basis of the actual competencies which are referred to.

The selection to the programme is based on the evaluation of the following criteria: university/higher education institute, courses relevant to the programme, suggestion to the degree project, recommendation letters and references.

The reference to KTH’s admission policy can be found in the KTH-Handbook

Implementation of the education

Structure of the education

The first term, technical intensive courses are taken. The courses are mainly theoretical with a portion of lab elements. Most of the courses include elements within practical and individual knowledge acquirement. There is a large focus on oral and written presentations.

In the second term, the knowledge is extended in courses which build on the first term. The “toolbox” which was started in the first term is extended with, first and foremost, computer simulations. The number of practical elements in the courses increases.

During the third term, a smaller degree project is performed. This is chosen based on the student’s own interest in consultation with the programme’s teachers. The last term is devoted to a degree project which is carried out in a group of two, or individually. The degree project can be carried out at an industrial company or at an institution.

Study year, term, and study period descriptions can be found in the KTH-Handbook.

Courses

The programme is course-based. Lists of courses are included in appendix 1.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

Conditions for participation in the programme

Term Enrolment

A condition in order to be able to participate in the studies is that the student must enrol for the next term every spring and fall. This is done via “Mina Sidor” on KTH’s website between November 1st and 15th and between May 1st and 15th.

With the enrolment, the student has submitted their intention of studying and participating in the programme. Only after that is it possible for the student to:

- register for courses
- register for the term
- get results

For studies in study year 2:

At least 45 higher education credits from study year 1 must be completed by the exam period in August. Students which have not fulfilled this requirement must consult with the study counsellor and set up an individual study plan. The main goal with the study plan is that the student should complete the remaining elements during the next study year. In the study plan, the remaining elements and also suitable courses from the next study year are included. Special regard should be taken to the courses prerequisites.

Recognition of previous academic studies

The student has the possibility to apply to receive credit from courses taken at another university/higher education institution both in Sweden and from abroad. The application can be found on KTH’s website.

KTH’s policy for recognition of previous academic studies can be found entirely in the KTH-Handbook.

Degree project

KTH’s rules for the degree project for the Master’s degree with specialisation can be found in the KTHHandbook.

Generally, the degree project work can be started only after a large portion of the studies have been completed.

KTH’s rules for the degree project can be found in the KTH-Handbook

KTH-Handbok 2, page 15.5

www.kth.se/info/kth-handboken/II/15/5.html

Degree

In order to graduate with the Degree of Master of Science (Two Years) within the main area Materials Science, a passing grade must be achieved in all courses which are in the student’s study plan. The study plan must comprise 120 higher education credits including a degree project consisting of 30 higher education credits.

KTH’s local degree ordinance can be found in the KTH-Handbook.

Appendix 1 - Course list

Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Materials Science and Engineering, 120 credits (TMSEM), Programme syllabus for studies starting in autumn 2007

Materials and Process Design (MD)

Year 1

Year 2

Mandatory courses (61.5 credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH200X</td>
<td>Degree Project in Materials and Process Design, Second Cycle</td>
<td>30.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2035</td>
<td>Metallurgical Reactor and Process Design</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2037</td>
<td>Ceramics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2100</td>
<td>Powder Metallurgy</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2450</td>
<td>International Seminar in Material Processes</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Materials Processing (MP)

Year 1

Year 2

Mandatory courses (55.5 credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KF2290</td>
<td>Polymer Processing</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>KF2410</td>
<td>Polymer Processing, Advanced Course</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2275</td>
<td>Project</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2279</td>
<td>Materials Processing, Project Support</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>Course code</td>
<td>Course name</td>
<td>Credits</td>
<td>Edu. level</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>MH2280</td>
<td>Simulation and Modelling in Materials Processing</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2281</td>
<td>Metal Forming</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2283</td>
<td>Solidification Processing</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
<tr>
<td>MH2285</td>
<td>Experimental Methods in Materials Processing</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH2037</td>
<td>Ceramics</td>
<td>6.0</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Either MH2284 or MH2037 must be chosen

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH2284</td>
<td>Joining</td>
<td>7.5</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Either MH2284 or MH2037 must be chosen

Supplementary information

Either MH2284 or MH2037 must be chosen
Appendix 2: Specialisations

Master's Programme, Materials Science and Engineering, 120 credits (TMSEM), Programme syllabus for studies starting in autumn 2007

Materials and Process Design (MD)

Materials Processing (MP)