Programme syllabus

Master's Programme, Nanotechnology, 120 credits
Masterprogram, nanoteknik
120.0 credits

Valid for students admitted to the education from autumn 17 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

Based on a solid understanding of basic materials science and solid state physics the program aims to establish an understanding of size-dependent materials, device and system properties, and the other way around, how these properties can be tailored by a controlled manipulation of the microstructure down to the atomic or molecular level. Furthermore, it aims for a good knowledge of various nano-scale devices as well as their applications and fabrication methods. Special emphasis is also paid to the understanding and usage of advanced characterization methods to assess detailed materials and device properties.

Knowledge and understanding

For a master’s degree in Nanotechnology the student shall:

- show knowledge and understanding in the area of Nanotechnology, comprising a wide knowledge of the area as well as more profound knowledge of some parts of the area, and insight into current research and development work
- show a deepened understanding of the various methodologies applied in Nanotechnology.

Skills and abilities

For a master’s degree in Nanotechnology the student shall:

- show ability to critically and systematically integrate knowledge and to analyze, evaluate and handle complex occurrences, issues and situations even with limited information
- show ability to critically, independently and creatively identify and formulate issues, to plan and with adequate methods perform qualified tasks within given time limits and thereby contribute to the evolution of knowledge as well as assess the work
- show ability, in domestic and international venues, to orally and in writing present and discuss conclusions and the knowledge and the arguments on which these are based, in dialogue with different groups
• show such skills which are required for participation in research and development work or in other independent work of a qualified nature.

Ability to make judgements and adopt a standpoint

For a master’s degree in Nanotechnology the student shall:

• show ability to make assessments taking into account relevant scientific, societal and ethic aspects as well as show awareness of ethical aspects of research and development work
• show insight into the possibilities and limitations of science, its role in society and the responsibility of humans for its use
• show ability to identify her/his need for additional knowledge and take responsibility for the development of his/her own knowledge.

Reference to KTH’s local Degree Ordinance https://intra.kth.se/styrning/regelverk/utbildning-pa-grund-och-avancerad-niva-1.660818.

Extent and content of the programme

Extent: 2 years (120 credits).

Level of education: Advanced.

Specializations: The program doesn’t offer any formal specializations, but depending on the choices of eligible courses it is possible to have a profile towards Nanoelectronics and Nanomaterials.

Language of education: English.

Eligibility and selection

See the KTH general admission requirements:

Special requirements:

Bachelor's degree in Physics, Electrical Engineering, Materials science, Chemistry or equivalent degree. Courses in mathematics corresponding to at least 30 ECTS credits, courses in physics corresponding to at least 60 ECTS credits.

The specific requirements may be assessed as not fulfilled if:

1. The degree awarding institution is not considered to meet acceptable quality standards by the authorities of the country in which the institution is located.
2. The degree does not qualify for admission to equivalent Master level in the country where the degree is awarded.

Selection process:
The selection process is based on the following selection criteria: University, previous studies (for instance GPA, grades in specific subjects and English), motivation for the studies (for instance letter of motivation, references, thesis proposal and relevant work experience). The evaluation scale is 1-75.

Implementation of the education

Structure of the education

Information regarding the academic year, study periods, etc, can be found at the student web pages: www.kth.se/student/schema.

The program spans over two years, where the first three semesters are devoted to course work, whereas the final semester is aimed for the diploma work. The courses are either compulsory or eligible, where the specific choice in the latter case provides a possibility for profiling towards Nanoelectronics or Nanomaterials. The fourth semester is dedicated for the thesis project.

Courses

The programme is course-based. Lists of courses are included in appendix 1.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

Conditions for participation in the programme

Registration for each semester as well as selection of elective courses is web-based and should be completed by November 15 and May 15.

Course registration is compulsory and should be done via the personal menu at KTH.se at the beginning of each course.

Promotion to the second year of studies is conditional that at least 75% of the requirements for the first year is completed.

Recognition of previous academic studies

Possible transfer of credits from previous course work follows the KTH policy described in the policy that is in KTH's regulatory framework https://intra.kth.se/styrning/regelverk/utbildning-pa-grund-och-avancerad-niva-1.660818.

Studies abroad

The diploma work as well as course work corresponding to maximum 30 credits may be carried out at a foreign university following approval of the program responsible. In this case a so-called “Learning agreement” must be established.
Degree project

The diploma work amounts to 30 credits, which should equal 20 weeks of full time studies. A student may apply for starting a thesis project given that most of the course work has been accomplished, corresponding to 60 credits out of which at least 30 credits at the advanced level within the major subject of the program.

The thesis topic should be relevant to the nanotechnology field.

The degree project is graded P/F (Pass/Fail). In order to pass, the degree project must show high quality as tested against the relevant examination objectives, often all national examination objectives. Directives and criteria for passing and grading are available at:

Specific directives and criteria for grading is available in the official course syllabus.

Degree

KTH's procedure for awarding degrees is described in KTH's regulatory framework https://intra.kth.se/styrning/regelverk/utbildning-pa-grund-och-avancerad-niva-1.660818.

The Masters degree is awarded after fulfilling all requirements defined by the program. This includes a total of 120 credits out of which 90 credits are at the advanced level and at least 60 credits (including 30 credits for the thesis work) corresponds to advanced level courses within the major subject of the program.

The name of the degree is “Teknologie Mastersexamen”, which in English translates to “Degree of Masters of Science (two years)”. The program name, Nanotechnology, is indicated on the diploma.

An application for the degree must be filed by the student and is made through the Personal menu at www.kth.se.

Appendix 1 - Course list
Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Nanotechnology, 120 credits (TNTEM), Programme syllabus for studies starting in autumn 2017

General courses

Year 1

Mandatory courses (39.0 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH1611</td>
<td>Semiconductor Devices</td>
<td>7.5 hp</td>
<td>First cycle</td>
</tr>
<tr>
<td>IH2652</td>
<td>Methods and Instruments of Analysis</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2753</td>
<td>Nanoelectronics</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2756</td>
<td>Introduction to Nanomaterials and Nanotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2758</td>
<td>Solid State Physics</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB2400</td>
<td>Bionanotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EK2350</td>
<td>Microsystem Technology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Year 2

Mandatory courses (7.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

Course
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB2410</td>
<td>Molecular Biotechnology for Nanotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EK2360</td>
<td>Hands-On Microelectromechanical Systems Engineering</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Supplementary information

Degree project 30 cr advanced level is compulsory during the spring term.

Track, Nanomaterials (NTEA)

Year 1

Mandatory courses (39.0 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH1611</td>
<td>Semiconductor Devices</td>
<td>7.5 hp</td>
<td>First cycle</td>
</tr>
<tr>
<td>IH2652</td>
<td>Methods and Instruments of Analysis</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2753</td>
<td>Nanoelectronics</td>
<td>9.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2756</td>
<td>Introduction to Nanomaterials and Nanotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2758</td>
<td>Solid State Physics</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB2400</td>
<td>Bionanotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>EK2350</td>
<td>Microsystem Technology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2762</td>
<td>Physics and Chemistry of Surfaces</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Year 2

Mandatory courses (7.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
</table>
BB2410 Molecular Biotechnology for Nanotechnology
For both tracks
7.5 hp Second cycle

EK2360 Hands-On Microelectromechanical Systems Engineering
For both tracks
7.5 hp Second cycle

SK2757 Project on Nanomaterials
7.5 hp Second cycle

SK2759 Superconductivity and Applications
6.0 hp Second cycle

SK2760 Chemistry of Nanomaterials
7.5 hp Second cycle

SK2761 Characterization of Nanomaterials
7.5 hp Second cycle

Supplementary information

Degree project 30 cr advanced level is compulsory during the spring term.

Track, Nanoelectronics (NTEB)

Year 1

Mandatory courses (39.0 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH1611</td>
<td>Semiconductor Devices</td>
<td>7.5 hp First cycle</td>
</tr>
<tr>
<td>IH2652</td>
<td>Methods and Instruments of Analysis</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>SK2753</td>
<td>Nanoelectronics</td>
<td>9.0 hp Second cycle</td>
</tr>
<tr>
<td>SK2756</td>
<td>Introduction to Nanomaterials and Nanotechnology</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>SK2758</td>
<td>Solid State Physics</td>
<td>7.5 hp Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB2400</td>
<td>Bionanotechnology</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>EK2350</td>
<td>Microsystem Technology</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>IH2655</td>
<td>Design and Characterisation of Nano- and Microdevices</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>IH2657</td>
<td>Design of Nano Semiconductor Devices</td>
<td>7.5 hp Second cycle</td>
</tr>
<tr>
<td>SK2755</td>
<td>Molecular Electronics</td>
<td>7.5 hp Second cycle</td>
</tr>
</tbody>
</table>

Year 2

Mandatory courses (7.5 Credits)

Course
code Course name Credits Edu. level
AK2036 Theory and Methodology of Science with Applications (Natural and Technological Science) 7.5 hp Second cycle

Conditionally elective courses

Course code Course name Credits Edu. level
BB2410 Molecular Biotechnology for Nanotechnology 7.5 hp Second cycle
For both tracks
EK2360 Hands-On Microelectromechanical Systems Engineering 7.5 hp Second cycle
For both tracks
IH2653 Simulation of Semiconductor Devices 7.5 hp Second cycle
IL2238 Fundamentals of Integrated Electronics 7.5 hp Second cycle
SK2822 Compound Semiconductors and Photonic Devices 7.5 hp Second cycle

Supplementary information

Degree project 30 cr advanced level is compulsory during the spring term.
Appendix 2: Specialisations

Master's Programme, Nanotechnology, 120 credits (TNTEM), Programme syllabus for studies starting in autumn 2017

Track, Nanomaterials (NTEA)

Track, Nanoelectronics (NTEB)