Programme syllabus

Master's Programme, Nanotechnology, 120 credits
Masterprogram, nanoteknik

120.0 credits

Valid for students admitted to the education from autumn 18 (HT - Autumn term; VT - Spring term).

This is a translation of the Swedish, legally binding, programme syllabus.

Programme objectives

The program aims to establish an understanding of size-dependent materials, device and system properties, and the other way around, how these properties can be tailored by a controlled manipulation of the microstructure down to the atomic or molecular level. Furthermore, it aims for a good knowledge of various nano-scale devices as well as their applications and fabrication methods. Special emphasis is also paid to the understanding and usage of advanced characterization methods to assess detailed materials and device properties.

Knowledge and understanding

For a master’s degree in Nanotechnology the student shall:

- show knowledge and understanding in the area of Nanotechnology, comprising a wide knowledge of the area as well as more profound knowledge of some parts of the area, and insight into current research and development work
- show a deepened understanding of the various methodologies applied in Nanotechnology
- give examples of and explain social, ethical and environmental aspects of sustainable development in the area of Nanotechnology.

Skills and abilities

For a master’s degree in Nanotechnology the student shall:

- show ability to critically and systematically integrate knowledge and to analyze, evaluate and handle complex occurrences, issues and situations even with limited information
- show ability to critically, independently and creatively identify and formulate issues, to plan and with adequate methods perform qualified tasks within given time limits and thereby contribute to the evolution of knowledge as well as asses the work
• show ability, in domestic and international venues, to orally and in writing present and discuss conclusions and the knowledge and the arguments on which these are based, in dialogue with different groups
• show such skills which are required for participation in research and development work or in other independent work of a qualified nature
• based on various definitions of sustainable development illustrate and point out perspectives where progress within Nanotechnology can be relevant for sustainable development in society
• understand the concept of sustainable use of finite resources and be able to demonstrate how this is implemented in the introduction of new nanomaterials.

Ability to make judgements and adopt a standpoint

For a master’s degree in Nanotechnology the student shall:

• show ability to make assessments taking into account relevant scientific, societal and ethic aspects as well as show awareness of ethical aspects of research and development work
• show insight into the possibilities and limitations of science, its role in society and the responsibility of humans for its use
• show ability to compare and evaluate possibilities and limitations of Nanotechnology in the society and how Nanotechnology is used from a sustainability perspective.
• show insight into the risks of nanotechnology from an environmental and health perspective
• show ability to identify her/his need for additional knowledge and take responsibility for the development of his/her own knowledge.

Extent and content of the programme

Extent: 2 years (120 credits).

Level of education: Advanced.

Specializations: The program doesn’t offer any formal specializations, but depending on the choices of eligible courses it is possible to have a profile towards Nanoelectronics and Nanomaterials.

Language of education: English.

Eligibility and selection

See the KTH general admission requirements:

Special requirements:
Bachelor's degree in Physics, Electrical Engineering, Materials science, Chemistry or equivalent degree. Courses in mathematics corresponding to at least 20 ECTS credits, courses in physics corresponding to at least 30 ECTS credits.

The specific requirements may be assessed as not fulfilled if:

1. The degree awarding institution is not considered to meet acceptable quality standards by the authorities of the country in which the institution is located.
2. The degree does not qualify for admission to equivalent Master level in the country where the degree is awarded.

Selection process:

The selection process is based on the following selection criteria: University, previous studies (for instance GPA, grades in specific subjects and English), motivation for the studies (for instance letter of motivation, references, thesis proposal and relevant work experience). The evaluation scale is 1-75.

Implementation of the education

Structure of the education

Information regarding the academic year, study periods, etc, can be found at the student web pages: www.kth.se/student/schema.

The program spans over two years, where the first three semesters are devoted to course work, whereas the final semester is aimed for the diploma work. The courses are either compulsory or eligible, where the specific choice in the latter case provides a possibility for profiling towards Nanoelectronics or Nanomaterials. The nanomaterials track offers an opportunity for a sustainability profile. Courses with such learning outcomes are also optional for the Nanoelectronics track and are included in the compulsory course Introduction to Nanotechnology (SKxxxx). The fourth semester is dedicated for the thesis project.

Courses

The programme is course-based. Lists of courses are included in appendix 1.

Grading system

Courses in the first and the second cycle are graded on a scale from A to F. A-E are passing grades, A is the highest grade. The grades pass (P) and fail (F) are used for courses under certain circumstances.

Conditions for participation in the programme

Participation requires admission to courses within the programme and course registration. Course registration is done via the personal menu at www.kth.se
For students starting their education from the autumn semester 2018, previous promotion requirements have been replaced with special admission requirements to each course. Admission requirements are specified in the course syllabus.

Recognition of previous academic studies

Possible transfer of credits from previous course work follows the KTH policy described in the policy that is in KTH’s regulatory framework https://intra.kth.se/styrning/regelverk/utbildning-pa-grund-och-avancerad-niva-1.660818.

Studies abroad

The diploma work as well as course work corresponding to maximum 30 credits may be carried out at a foreign university following approval of the program responsible. In this case a so-called “Learning agreement” must be established.

Degree project

The degree project is the final part of the education and comprises 30 higher education credits. The project work may begin when special admission requirements for the course are fulfilled.

The thesis topic should be relevant to the nanotechnology field.

The degree project is graded P/F (Pass/Fail). In order to pass, the degree project must show high quality as tested against the relevant examination objectives, often all national examination objectives. Directives and criteria for passing and grading are available at:

Specific directives and criteria for grading is available in the official course syllabus.

Degree

KTH’s procedure for awarding degrees is described in KTH’s regulatory framework https://intra.kth.se/styrning/regelverk/utbildning-pa-grund-och-avancerad-niva-1.660818.

The Masters degree is awarded after fulfilling all requirements defined by the program. This includes a total of 120 credits out of which 90 credits are at the advanced level and at least 60 credits (including 30 credits for the thesis work) corresponds to advanced level courses within the major subject of the program.

The name of the degree is “Teknologie Mastersexamen”, which in English translates to “Degree of Masters of Science (two years)”. The program name, Nanotechnology, is indicated on the diploma.

An application for the degree must be filed by the student and is made trough the Personal menu at www.kth.se.
Appendix 1 - Course list
Appendix 2 - Programme syllabus descriptions
Appendix 1: Course list

Master's Programme, Nanotechnology, 120 credits (TNTEM), Programme syllabus for studies starting in autumn 2018

General courses

Year 1

Mandatory courses (37.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH2652</td>
<td>Methods and Instruments of Analysis</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>IH2659</td>
<td>Nanofabrication Technologies</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2770</td>
<td>Introduction to Nanotechnology</td>
<td>5.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2771</td>
<td>Solid State Physics</td>
<td>5.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2772</td>
<td>Chemistry for Nanotechnology</td>
<td>5.0 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2901</td>
<td>Quantum Materials and Devices</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Year 2

Mandatory courses (37.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications. (Natural and Technological Science)</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>IF246X</td>
<td>Degree Project in Engineering Physics, Second Cycle</td>
<td>30.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Track, Nanomaterials (NTEA)

Year 1

Mandatory courses (37.5 Credits)
### Code	Course name	Credits	Edu. level
IH2652 | Methods and Instruments of Analysis | 7.5 hp | Second cycle
IH2659 | Nanofabrication Technologies | 7.5 hp | Second cycle
SK2770 | Introduction to Nanotechnology | 5.0 hp | Second cycle
SK2771 | Solid State Physics | 5.0 hp | Second cycle
SK2772 | Chemistry for Nanotechnology | 5.0 hp | Second cycle
SK2901 | Quantum Materials and Devices | 7.5 hp | Second cycle

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB2400</td>
<td>Bionanotechnology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2773</td>
<td>Nanothermodynamics</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2774</td>
<td>Colloids and Colloidal Principles for Applications</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Year 2

Mandatory courses (37.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>IF246X</td>
<td>Degree Project in Engineering Physics, Second Cycle</td>
<td>30.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK2757</td>
<td>Project on Nanomaterials</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2760</td>
<td>Chemistry of Nanomaterials</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2775</td>
<td>Nanomaterials for Sustainable Energy and Environment</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Track, Nanoelectronics (NTEB)

Year 1

Mandatory courses (37.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH2652</td>
<td>Methods and Instruments of Analysis</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>
IH2659 Nanofabrication Technologies 7.5 hp Second cycle
SK2770 Introduction to Nanotechnology 5.0 hp Second cycle
SK2771 Solid State Physics 5.0 hp Second cycle
SK2772 Chemistry for Nanotechnology 5.0 hp Second cycle
SK2901 Quantum Materials and Devices 7.5 hp Second cycle

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK2350</td>
<td>Microsystem Technology</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>IH1611</td>
<td>Semiconductor Devices</td>
<td>7.5 hp</td>
<td>First cycle</td>
</tr>
<tr>
<td>IH2657</td>
<td>Design of Nano Semiconductor Devices</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Year 2

Mandatory courses (37.5 Credits)

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK2036</td>
<td>Theory and Methodology of Science with Applications (Natural and Technological Science)</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>IF246X</td>
<td>Degree Project in Engineering Physics, Second Cycle</td>
<td>30.0 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>

Conditionally elective courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>Credits</th>
<th>Edu. level</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK2360</td>
<td>Hands-On Microelectromechanical Systems Engineering</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>IH2653</td>
<td>Simulation of Semiconductor Devices</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>IL2238</td>
<td>Fundamentals of Integrated Electronics</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
<tr>
<td>SK2822</td>
<td>Compound Semiconductors and Photonic Devices</td>
<td>7.5 hp</td>
<td>Second cycle</td>
</tr>
</tbody>
</table>
Appendix 2: Specialisations

Master's Programme, Nanotechnology, 120 credits (TNTEM), Programme syllabus for studies starting in autumn 2018

Track, Nanomaterials (NTEA)

Track, Nanoelectronics (NTEB)