Utbildningsplan

Masterprogram, tekniska beräkningar
Master's Programme, Scientific Computing, 120 credits
120,0 högskolepoäng

Gäller för antagna till utbildningen fr o m HT08.

Utbildningens mål

The main objective of this programme is to educate students with skills in scientific computing, well prepared for advanced industrial positions or continued graduate studies.

Kunskap och förståelse

A Master of Science in Scientific Computing will:

- have a good broad knowledge in mathematics, the solution of mathematically related problems on computers, numerical methods and applications where high performance computing is used as well as deepened knowledge within a chosen specialization area.

- have a good ability to apply suitable methods and computer tools to different types of mathematical models.

- be able to formulate and approach new problem settings in a scientific manner in a creative, critical and systematic way.

Färdigheter och förmågor

A Master of Science in Scientific Computing will be able to:

- work out solution strategies to different classes of mathematical models, knowing the capabilities and limitations of different methods and tools.
- work efficiently in a teamwork environment in groups with people from different scientific and engineering background.
- communicate with scientists and people active in engineering development in a competent manner both orally and in writing.
- follow and participate in research and development related to chosen specialization.
Värderingsförmåga och förhållningssätt

A Master of Science in Scientific Computing will be able to:

- critically judge a problem and in an independent manner acquire the information and knowledge that is necessary to establish a qualified opinion.
- have the ability to identify the need for further knowledge in the field and take responsibility for keeping her/his personal knowledge up to date.

Utbildningens omfattning och innehåll

Scientific Computing is a two-year (120 ECTS credits) master programme on the advanced level (second cycle). The instruction language is entirely English. The programme consists of a basic curriculum followed by three specializations: (i) Scientific Computing, (ii) Computational Fluid Dynamics, and (iii) Computational Biology. The courses in the basic curriculum are compulsory and constitute about half of the course work. To obtain sufficient depth in a specialization, a student is normally required to complete courses worth at least 15 ECTS credits among the profile courses for the specialization in question.

Behörighet och urval

General admission requirements
A completed Bachelor's degree, equivalent to a Swedish Bachelor's degree (180 ECTS credits), from a university recognized by the Swedish government or accredited by some other recognized organization. A good knowledge of written and spoken English. Applicants must provide proof of their proficiency in English.

Specific admission requirements
The prerequisites for the Master's programme in Scientific Computing is a Swedish or foreign degree equivalent to Bachelors degree of 180 ECTS credits, with credits in different subjects according to the following minimum levels. In Mathematics 30 ECTS credits, where the following courses are included: Linear Algebra, Calculus, Ordinary and Partial Differential Equations. In Numerical Analysis 10 ECTS credits and in Computer Science 10 ECTS credits. Finally 15 ECTS credits in courses from applications where high performance computing is essential, e.g. Fluid Dynamics, Electromagnetics, Mechanics.

Selection process
The selection process for the Master of Science programme in Scientific Computing is based on a total evaluation of the following selection criteria: grade point average (GPA), course work related to the programme (solving mathematically related problems on computer), letter of intent and references.

Complete information on the eligibility requirements can be found in the local admission policy of KTH, see: http://www.kth.se/info/kth-handboken/II/11/5.html

Utbildningens genomförande

Utbildningens upplägg
The academic year lasts for a duration of 40 weeks. The academic year at KTH is divided into four periods. Each period lasts approximately seven weeks. Each period is followed by an exam period. In addition to the four regular exam periods, there are three additional re-examination periods: after Christmas, after May and immediately preceding the first study period of the academic year.

The first year in the programme is mainly dedicated to the compulsory courses in the basic curriculum. However, some courses in the specializations are also given in the first year, in order to harmonize the master programme and the final part of the five-year engineering education at KTH. The second year mainly consists of specialization courses, elective courses and the final degree project.

Kurser

Utbildningen sker i kursform. Kurslistor finns i bilaga 1.

The programme is course-based with strong features of computer labs and projects, oral presentations, written reports, take-home exams and regular written exams. A list of courses is included in Appendix 1. The basic curriculum corresponds to 55 ECTS credits. In each specialization, there is an additional set of profile courses, of which normally at least 15 ECTS credits has to be taken. This leaves approximately 20 ECTS credits for optional (elective) courses. These courses may be chosen among more profile courses or other high level courses at KTH, relevant to the programme and the student's profile.

Betygssystem

För kurser på KTH används en sjugradig målrelaterad betygsskala A-F som slutbetyg för kurser på grundnivå och avancerad nivå. A-E är godkända betyg med A som högsta betyg. Betygen godkänd (P) och underkänd (F) används som slutbetyg då särskilda skäl föreligger.

Villkor för deltagande i utbildningen

No later than November 15 and May 15 each academic year, respectively, the students are required to make a study registration and course selection for the coming term. At least 45 ECTS credits have to be completed during the first academic year (including the re-examination period in August) in order for the student to be promoted to the second year of the programme. Students have to make a decision about the specialization during the first year of the programme.

Tillgodoräknanden

Under certain circumstances, and in agreement with the programme director, credits for previous studies can be received according to the local policy of KTH, see http://www.kth.se/info/kth-handboken/II/13/3.html

Examensarbete

Students admitted to the programme are required to perform an individual study in the form of a thesis project corresponding to 30 ECTS credits. To begin the thesis project, a student must normally have completed at least 60 ECTS credits of the total course work and 10 ECTS credits of the profile courses in
the specialization. The purpose of the thesis project is that the student demonstrates the ability to perform independent project work, using the skills obtained from the courses in the programme. It is the student's responsibility to find a suitable thesis project, with assistance from KTH.

More information on the KTH policy on the degree project can be found at:
http://www.kth.se/info/kth-handboken/II/15/5.html

Examen

In order to graduate with a degree of Master one must pass every course that is included in the student’s study plan. The programme must be designed such that the student, at the time of receiving the degree, fulfills the national Degree Ordinance and has completed courses corresponding to a total of 120 ECTS credits, where:

- at least 90 ECTS credits belong to the second cycle, of which 60 ECTS credits are in the main field of study and 30 of those 60 ECTS credits correspond to the degree project.

Students who fulfill all the requirements will be awarded a degree of Master of Science (two years). Students must apply for the degree and also show proof of their basic degree (Bachelor or similar) and have paid the student union fee.

Degree name

Degree of Master of Science (Two Years)
Teknologie magisterexamen (Två år)

http://www.kth.se/info/kth-handboken/II/19/1.html

- Bilaga 1 - Kurslista
- Bilaga 2 - Inriktningsbeskrivningar
Bilaga 1: Kurslista

Masterprogram, tekniska beräkningar (TSCCM), Utbildningsplan för kull HT2008

Gemensamma kurser

Årskurs 1

Obligatoriska kurser (46,5 Högskolepoäng)

<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Kursnamn</th>
<th>Omfattning</th>
<th>Utb. nivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD2325</td>
<td>Tillämpad programmering och datalogi</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2251</td>
<td>Tillämpade numeriska metoder III</td>
<td>9,0 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2255</td>
<td>Numerisk behandling av differentialekvationer</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2260</td>
<td>Finita elementmetoden</td>
<td>6,0 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2264</td>
<td>Parallella beräkningar för storskaliga problem, del 1</td>
<td>6,0 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2265</td>
<td>Parallella beräkningar för storskaliga problem, del 2</td>
<td>3,0 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2266</td>
<td>Matematiska modeller, analys och simulering del 1</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
</tbody>
</table>

Valfria kurser

<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Kursnamn</th>
<th>Omfattning</th>
<th>Utb. nivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD2257</td>
<td>Visualisering</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2281</td>
<td>Beräkningsmetoder för stokastiska differentialekvationer</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2290</td>
<td>Avancerade numeriska metoder</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>MH2102</td>
<td>Fysikaliska beräkningar på högprestandadatorer</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>SG2212</td>
<td>Strömningsmekaniska beräkningar</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>SG2213</td>
<td>Tillämpade strömningsmekaniska beräkningar</td>
<td>3,0 hp</td>
<td>Avancerad nivå</td>
</tr>
</tbody>
</table>

Årskurs 2

Obligatoriska kurser (45,0 Högskolepoäng)

<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Kursnamn</th>
<th>Omfattning</th>
<th>Utb. nivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA2205</td>
<td>Vetenskapsteori och forskningsmetodik</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
<tr>
<td>DN2258</td>
<td>Introduktion till högprestandaberäkningar</td>
<td>7,5 hp</td>
<td>Avancerad nivå</td>
</tr>
</tbody>
</table>
DN240X Examensarbete inom beräkningsteknik, avancerad nivå 30,0 hp Avancerad nivå

Rekommenderade kurser

<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Kursnamn</th>
<th>Omfattning Utb. nivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB2300</td>
<td>Beräkningskemi</td>
<td>7,5 hp Avancerad nivå</td>
</tr>
<tr>
<td>DD2431</td>
<td>Maskininlärning</td>
<td>6,0 hp Avancerad nivå</td>
</tr>
<tr>
<td>DN2230</td>
<td>Snabba numeriska algoritmer för storskaliga problem</td>
<td>7,5 hp Avancerad nivå</td>
</tr>
<tr>
<td>DN2274</td>
<td>Elektromagnetiska beräkningar</td>
<td>7,5 hp Avancerad nivå</td>
</tr>
<tr>
<td>DN2275</td>
<td>Avancerade beräkningsmetoder i flödesmekanik</td>
<td>7,5 hp Avancerad nivå</td>
</tr>
<tr>
<td>DN2295</td>
<td>Projektkurs i beräkningsteknik</td>
<td>7,5 hp Avancerad nivå</td>
</tr>
<tr>
<td>DN2297</td>
<td>Avancerad individuell kurs i beräkningsteknik</td>
<td>6,0 hp Avancerad nivå</td>
</tr>
<tr>
<td>IH2653</td>
<td>Simulering av halvledarkomponenter</td>
<td>7,5 hp Avancerad nivå</td>
</tr>
<tr>
<td>SD2610</td>
<td>Beräkningsaerodynamik</td>
<td>9,0 hp Avancerad nivå</td>
</tr>
</tbody>
</table>

Kompletterande information

Inriktningsspår är:

1. Scientific Computing
2. Computational Fluid Dynamics
3. Computational Biology

Minst 15 hp av profilkurserna inom valt spår måste läsas.

Kontakta programansvarig för uppgift om profilkurser för respektive spår.
Bilaga 2: Inriktningar

Masterprogram, tekniska beräkningar (TSCCM), Utbildningsplan för kull HT2008

Programmet har inga inriktningar.