Aeronautics (FLT)

The aeronautics track focuses on modeling, analysis and design of aircraft. The overall objectives are that the student should be able to design and estimate the performance of an aircraft, compute its aerodynamic properties, simulate its motion in flight, and analyze how its aerodynamic and structural properties influence stability and control. The track is characterized by a strong interaction between theory and practice, and the student will plan, perform and evaluate several wind tunnel tests during her education. An engineer with this profile is particularly attractive to companies working in aerodynamics and aeronautics.

Lightweight Structures (LKR)

The lightweight structures track focuses on lightweight materials and structures for the development of new engineering solutions and products. Reduced structural weight can be used for improved structural efficiency, cheaper production and maintenance, and reduced environmental impact. Emphasis is put on fibre composites, non-metallic materials and sandwich structures, often used in applications with extreme requirements. Students following the track will develop knowledge and skills in analysis, design, optimization, materials, manufacturing and testing of lightweight structures. Fibre composites design call for a systems approach to the choice of materials, manufacturing processes and product solutions, preparing the students for future roles as engineers working with development of new products or materials. A structural engineer is attractive to a large number of industries in aerospace-, naval- or automotive engineering, as well as smaller businesses working with e.g. manufacturing or innovation.

Space (RMD)

Space technology plays a key role in modern society, enabling telecommunication and navigation services, weather forecasting, Earth observation and much more. The space track focuses on applications related to rocket and satellite technology, with particular emphasis on propulsion, trajectory analysis and spacecraft dynamics. The space environment and its impact on the design and instrumentation of satellites is another central theme in the education. Since most of the courses are given in the second year, the space track can conveniently be combined with (parts of) the other tracks in the program. As a space engineer you can for example work with design or control of satellites, or perform trajectory analysis of launchers or sounding rockets. You will become particularly attractive to companies working with spacecraft and satellite technology.

Systems Engineering (SYS)

Aircrafts, rockets and satellites are complex systems that have to be designed with reliable control systems and efficient maintenance plans to be competitive in today's global market. The overall objective with the systems track is that you should be able to develop mathematical models of systems in order to analyze and optimize their performance. Control theory had a crucial role in the development of rockets, and has since improved robustness and performance of modern airplanes. Today, it is becoming an increasingly important factor in other areas such as the automotive industry and communications systems. A systems engineer could be working with the design of the control of the damping in an aircraft landing gear, or on how to find the least costly spare parts management system or analyzing the reliability of a radar system. A systems engineer is attractive to a large number of industries in various fields.