BB2255 Applied Gene Technology 7.5 credits

Tillämpad genteknologi

The course aims to give detailed insight into the techniques and trends in the fields of genomics and transcriptomics, DNA-assisted proteomics and high throughput data analysis in genomics and transcriptomics. This will build up the necessary foundations for further understanding of association studies, forensics, population genetics, diagnostics, medicine and drug development.

Show course information based on the chosen semester and course offering:

Offering and execution

No offering selected

Select the semester and course offering above to get information from the correct course syllabus and course offering.

Course information

Content and learning outcomes

Course contents *

The course aims to give detailed insight into the techniques and trends in the fields of genomics and transcriptomics, DNA-assisted proteomics and high throughput data analysis in genomics and transcriptomics. The focus of the course will thus be on describing, applying and relating state-of-the-art technologies and high throughput data analysis. This will build up the necessary foundations for further understanding of association studies, forensics, population genetics, diagnostics, medicine and drug development.

The course will describe conventional strategies for whole genome sequencing, high throughput methods for typing of genetic variations, advanced techniques and platforms for DNA sequencing including whole genome sequencing, RNA-seq, and single cell transcript profiling.

The course also consists of a series of lectures, and computer-based laboratory exercises, aimed at understanding and analyzing data from genome sequencing, RNA-seq and single cell RNA-seq (scRNA-seq).

In addition, the students are involved in a literature project, which will be performed in groups. Each group presents scientific articles and will oppose other groups’ articles. This project aims to teach critical reading, interpretation and comparison of the most advanced techniques and platforms in the field of high-throughput molecular biology. The project requires teamwork and planning, as well as participation in the groups’ common work. Presence when the project is presented is compulsory.

Intended learning outcomes *

On completion of the course, the students should be able to:

  • Describe, illustrate and apply different techniques in the fields of genomics and transcriptomics
  • Describe, illustrate and apply different techniques used for high-throughput molecular biology studies
  • Report orally and in writing within the subject
  • Review and give constructive feedback on the reports within the subject
  • Explain the theory of state-of-the-art tools/algorithms for processing data from high-throughput molecular biology experiments
  • Choose and use appropriate methods and tools for processing data from high-throughput molecular biology experiments

Course Disposition

No information inserted

Literature and preparations

Specific prerequisites *

No information inserted

Recommended prerequisites

No information inserted

Equipment

No information inserted

Literature

No information inserted

Examination and completion

Grading scale *

A, B, C, D, E, FX, F

Examination *

  • PRO1 - Literature Seminar, 1.0 credits, Grading scale: P, F
  • PRO2 - Computer-based Laboratory exercises, 2.5 credits, Grading scale: P, F
  • TEN1 - Examination, 4.0 credits, Grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Afshin Ahmadian

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web BB2255

Offered by

CBH/Gene Technology

Main field of study *

Biotechnology

Education cycle *

Second cycle

Add-on studies

No information inserted

Ethical approach *

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Supplementary information

The module ÖVN1 will not be used.