BB2485 Metabolic Engineering 7.5 credits

Metabolic Engineering

Show course information based on the chosen semester and course offering:

Offering and execution

No offering selected

Select the semester and course offering above to get information from the correct course syllabus and course offering.

Course information

Content and learning outcomes

Course contents *

  • Metabolic pathways for production of organic acids, amino acids, alcohols, monomers, and polymers.
  • The underlying concept behind balancing the above pathways, based on elemental, redox and energy balance.
  • Metabolic control analysis.
  • Metabolic engineering strategies.
  • Metabolic flux analysis (MFA).
  • The concepts of genome-scale stoichiometric metabolic models.
  • The use of genome-scale models for designing metabolic engineering strategies.
  • The inclusion of thermodynamic constraints in genome-scale stoichiometric models.
  • State-of-the-art genome-scale modelling, combining stoichiometry, proteomics and metabolomics.

Intended learning outcomes *

On completion of the course, the students should be able to:

  • Quantitatively describe metabolic pathways for production of industrially relevant fuels and chemicals discussed in the course
  • Characterize the above pathways based on elemental, redox, and energy balances, discuss their engineering requirements, and propose relevant metabolic engineering strategies
  • Construct and solve mathematical representations of metabolic networks, based on provided external measurements
  • Implement genome-scale metabolic modelling for design and evaluation of metabolic engineering strategies

Course Disposition

No information inserted

Literature and preparations

Specific prerequisites *

At least 150 credits from grades 1, 2 and 3, of which at least 100 credits from years 1 and 2, and bachelor's work must be completed.  The 150 credits should include a minimum of 20 credits within the fields of Mathematics, Numerical Analysis and Computer Sciences, 5 of these must be within the fields of Numerical Analysis and Computer Sciences, 30 credits of Chemistry, possibly including courses in Chemical Measuring Techniques and 20 credits of Biotechnology or  Molecular Biology.

Recommended prerequisites

No information inserted

Equipment

No information inserted

Literature

No information inserted

Examination and completion

Grading scale *

A, B, C, D, E, FX, F

Examination *

  • PRO1 - Assignment in metabolic modelling, 2.5 credits, Grading scale: P, F
  • TEN1 - Examination, 5.0 credits, Grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Antonius Van Maris

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web BB2485

Offered by

CBH/Industrial Biotechnology

Main field of study *

Biotechnology

Education cycle *

Second cycle

Add-on studies

No information inserted

Ethical approach *

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.