The course is about the theoretical foundation of pattern recognition and gives an introduction to technical applications, especially in speech recognition and image or sound classification.
EQ2340 Pattern Recognition 7.5 credits
This course has been discontinued.
Decision to discontinue this course:
No information inserted
How can you make a computer understand your voice? How can you make a computer understand your handwriting? How do you detect signal patterns that are hidden in noise? How can a computer distinguish between ECG recordings from healthy and sick hearts? The course in Pattern Recognition gives you the theory to answer this kind of questions. In the course project, you create your own MatLab toolbox for pattern recognition.
Information per course offering
Course offerings are missing for current or upcoming semesters.
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus EQ2340 (Autumn 2015–)Content and learning outcomes
Course contents
Intended learning outcomes
The participants shall after the course be able to
* design systems and algorithms for pattern recognition (signal classification), with focus on sequences of patterns that are analyzed using, e.g., hidden Markov models (HMM),
* analyse classification problems probabilistically and estimate classifier performance,
* understand and analyse methods for automatic training of classification systems,
* apply Maximum-likelihood parameter estimation in relatively complex probabilistic models, such as mixture density models and hidden Markov models,
* understand the principles of Bayesian parameter estimation and apply them in relatively simple probabilistic models.
Literature and preparations
Specific prerequisites
For single course students: 120 credits and documented proficiency in English B or equivalent.
Literature
Arne Leijon (20xx) Pattern Recognition. KTH. (latest version).
See course homepage for current information.
Examination and completion
Grading scale
Examination
- INL1 - Assignment, 2.5 credits, grading scale: A, B, C, D, E, FX, F
- TEN1 - Exam, 5.0 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
If the course is discontinued, students may request to be examined during the following two academic years.
Written exam and compulsory Homework Assignment including Matlab implementation of classifier tools.
Other requirements for final grade
Exam 5p (grade A-F). Homework Assignment 2.5p (A-F). The final grade is a weighted sum of graded performance on the Exam and Homework Assignment, with weight 25 for the exam and 10 for the Homework Assignment.
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.