Lectures, textbook reading with exercises (solutions), written exam.
- An introductory overview of polymer science: fundamental concepts in polymer science, primary and secondary bonds including potential functions, the molar mass concept in polymer science, an overview of structures and phase transitions in polymers, and the history of polymer science and engineering (Chapter 1).
- Chain conformations: theta-state, conformations of polymers in crystals, conformations including scaling laws of polymers in different solvents (good, theta and poor) and in the molten state (the Flory theorem), models describing global dimensions of polymer coils, and finally the random-flight analysis (Chapter 2)
- Rubber elasticity: thermodynamic relationships including a simple description of entropy and enthalpy forces, statistical mechanical models (affine network and phantom network), real polymer networks – loose chain ends, trapped entanglements (Langley model), Flory-Rehner model, and finally an overview of then more novel models (Chapter 3).
- Polymer solutions: the regular solution model, definition of different phase separation mechanisms including nucleation-controlled growth and spinodal decomposition, the Flory-Huggins theory, concentration-regimes according to de Gennes, the solubility parameter concept, and an overview of the equation-of-state models (Chapter 4).
- Polyelectrolytes: theories, solutions and gels (Chapter 2, Section 2.12; text by Wågberg)
- Glassy state of polymers: The glass transition temperature and its dependence on molecular structure and architecture, the free volume concept, plasticisation, physical ageing – phenomenology, models and theory, sub-glass processes, molecular interpretation of the glass transition, and the structure of glassy polymers (Chapter 5).
- Semicrystalline polymers: polymer crystallography, the crystal lamella – sectors, chain folding and lateral habit, superstructures (spherulites, axialtites and oriented superstructures) and how they are related to the lamellar structure including the segregated structures, crystallinity, melting point and how it is related to crystal thickness (Thomson-Gibbs equation), crystallization kinetics – different classes of theories (overview), kinetics growth theories, and finally an overview of the theories including a critical metastable phase (Chapters 7 and 8).