- Energy and heat
- Gas laws
- Thermodynamics 1st and 2nd main clause, entropy
- Thermodynamic processes, the Carnot process, efficiency and figure of merits
- Heat transport (radiation, convection, heat conduction)
- Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann's distributions and different practical applications to these distributions (metals, semiconductor, radiation)
- Partition function, state density
- Free energy, enthalpy, Maxwell relations
- Planet Earth as a thermodynamic system
SK1119 Thermodynamics and Statistical Physics 7.5 credits
Information per course offering
Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.
Information for Spring 2025 Start 17 Mar 2025 programme students
- Course location
KTH Campus
- Duration
- 17 Mar 2025 - 2 Jun 2025
- Periods
- P4 (7.5 hp)
- Pace of study
50%
- Application code
60231
- Form of study
Normal Daytime
- Language of instruction
Swedish
- Course memo
- Course memo is not published
- Number of places
Min: 25
- Target group
Only open for CELTE2 and CELTE3
- Planned modular schedule
- [object Object]
- Schedule
- Schedule is not published
Contact
Martin Månsson (condmat@kth.se)
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus SK1119 (Spring 2023–)Content and learning outcomes
Course contents
Intended learning outcomes
The course gives the basic knowledge and skills within thermodynamics and statistical physics that an electrical engineer would need and that are required to enter a Master's programme within a physics related subject area. The students should be able to utilise their knowledge to solve basic, practically orientated, problems in the area.
On completion of the course, the students should be able to:
- account for the concept of energy and how energy is stored and it is transferred between different forms during thermodynamic processes.
- apply idealised thermodynamic processes (isochoric, isobaric, isothermal and adiabatic) both independently and as part of a thermodynamic cyclic process.
- master thermodynamics the first and second laws and be able to utilise these in calculations of energy and entropy.
- relate energy flow in thermodynamic circuit processes to the efficiency at engines and to the figure of merits of heat pumps and cooling engines and carry out calculations.
- carry out calculations on heat transport problems (radiation, convection, heat conduction).
- describe the connection between macroscopic thermodynamic units and statistical physics description of equivalent phenomenon.
- apply statistical distributions within different relevant fields for an electrical engineer (for example metals/conductors, semiconductors, radiation).
- be acquainted with basic concepts within statistical physics.
- describe the thermodynamic aspects of sustainable development.
- be familiar with simulations of physical problems.
Literature and preparations
Specific prerequisites
- Basic physics (IF1603, SK1108)
- Mathematical analysis in several variables (equivalent SF1626)
- Statistics (Active participation in SF1920 Probability theory and statistics or equivalent)
Recommended prerequisites
Equipment
Literature
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- PRO1 - Project, 1.5 credits, grading scale: P, F
- TEN1 - Examination, 6.0 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Other requirements for final grade
Approved grade on the written exam and project
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Yes
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.