Hoppa till huvudinnehållet
Till KTH:s startsida

AB1012 Projektkurs i matematisk statistik 6,0 hp

Information per kursomgång

Kursomgångar saknas för aktuella eller kommande terminer.

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan AB1012 (HT 2012–)
Rubriker med innehåll från kursplan AB1012 (HT 2012–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

Grundläggande begrepp såsom sannolikhet, betingad sannolikhet och oberoende händelser. Diskreta och kontinuerliga stokastiska variabler, i synnerhet endimensionella stokastiska variabler. Läges-, spridnings- och beroendemått för stokastiska variabler och datamängder. Vanliga fördelningar och deras modellsituationer, bland annat normalfördelningen, binomialfördelningen och poissonfördelningen. Centrala gränsvärdessatsen och stora talens lag beskrivande statistik.

Punktskattningar och generella skattningsmetoder såsom Maximum-likelihoodmetoden och Minsta-kvadratmetoden. Allmänna konfidensintervall men speciellt konfidensintervall för väntevärde och varians i normalfördelning. Konfidensintervall för andelar och skillnad i väntevärden och andelar

Hypotesprövning. Chi2-test av fördelning, homogenitetstest och kontigenstabeller. Linjär regression.

Lärandemål

Efter fullgjord kurs förväntas studenten kunna

  • konstruera elementära statistiska modeller för experiment
  • beskriva standardmodeller och redogöra för tillämpbarheten för dessa i givna exempel
  • definiera och beräkna sammanfattande beskrivande storheter för statistiska fördelningar och datamängder såsom läges-, spridnings- och beroendemått
  • med standardmetoder såsom Maximum-likelihhodmetoden och minsta-kvadratmetoden utveckla skattningar för storheter och kvantifiera osäkerheten i dessa skattningar, till exempel med felfortplantningsformler och konfidensintervall
  • värdera och jämföra skattningar bland annat med hänsyn till egenskaper såsom väntevärdesriktighet och effektivitet
  • analysera hur mätosäkerhet påverkar slutsatser och kvantifiera risker och felsannolikheter i statistisk hypotesprövning

Kurslitteratur och förberedelser

Särskild behörighet

Grundläggande differential- och integralkalkyl

Kurslitteratur

Du hittar information om kurslitteratur antingen i kursomgångens kurs-PM eller i kursomgångens kursrum i Canvas.

Examination och slutförande

Betygsskala

P, F

Examination

  • INL1 - Inlämningsuppgifter, 6,0 hp, betygsskala: P, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Övriga krav för slutbetyg

Godkänd projektuppgift

Examinator

Ingen information tillagd

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Samhällsbyggnad, Teknik

Utbildningsnivå

Grundnivå