Hoppa till huvudinnehållet
Till KTH:s startsida

DD2363 Vetenskapliga beräkningsmetoder 7,5 hp

Kursen presenterar numeriska metoder och algoritmer för grundläggande modeller inom beräkningsvetenskap, speciellt partikelmodeller, ordinära differentialekvationer och partiella differentialekvationer. Aktuella forskningsfrågor lyfts fram, t.ex. vad gäller maskininlärning, parallella och distribuerade beräkningar.

Information per kursomgång

Välj termin och kursomgång för att se aktuell information och mer om kursen, såsom kursplan, studieperiod och anmälningsinformation.

Termin

Information för VT 2025 metsc25 programstuderande

Studielokalisering

KTH Campus

Varaktighet
2025-01-14 - 2025-03-16
Perioder
P3 (7,5 hp)
Studietakt

50%

Anmälningskod

60243

Undervisningsform

Normal Dagtid

Undervisningsspråk

Engelska

Kurs-PM
Kurs-PM är inte publicerat
Antal platser

Ingen platsbegränsning

Målgrupp

Sökbar för alla program från årskurs 3 och för studenter antagna på ett masterprogram under förutsättning att kursen kan ingå i programmet.

Planerade schemamoduler
[object Object]
Schema
Schema är inte publicerat

Kontakt

Examinator
Ingen information tillagd
Kursansvarig
Ingen information tillagd
Lärare
Ingen information tillagd
Kontaktperson

Johan Hoffman, e-post: jhoffman@kth.se

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan DD2363 (VT 2019–)
Rubriker med innehåll från kursplan DD2363 (VT 2019–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

Kursen fokuserar på tre områden:

• Partikelmodeller. Explicita tidsstegningsmetoder, N-kroppsproblemet och glesa approximationer. Tillämpningar t.ex. på solsystemet, mass-fjädersystem, eller molekyldynamik.   

• ODE-modeller. Implicita tidsstegningsmetoder, lösningsalgoritmer för glesa system av icke-linjära ekvationer. Tillämpningar inom t.ex. populationsdynamik, systembiologi eller kemiska reaktioner.

• PDE-modeller. Rumsdiskretisering genom partiklar, strukturerade nät, eller ostrukturerade nät. Nätalgoritmer; förfining, förgrovning, optimering. Stencilmetoder, funktionsapproximation, Galerkins metod, finita elementmetoden.

För varje område diskuteras datorimplementering och algoritmer för parallell och distribuerad beräkning, vilket också övas i datorlaborationer.     

Lärandemål

Efter godkänd kurs ska studenten kunna:

• konstruera och implementera explicita tidsstegningsmetoder för partikelmodeller,

• konstruera och implementera implicita tidsstegningsmetoder för generella system av ordinära differentialekvationer (ODE),

• konstruera och implementera lösningsalgoritmer för system av icke-linjära ekvationer,

• formulera finita elementmetoder (FEM) för partiella differentialekvationer (PDE) och anpassa FEM-mjukvara till ett givet problem,

• föreslå lämplig parallelliseringsstrategi för en given partikelmodell, ODE eller PDE.

Kurslitteratur och förberedelser

Särskild behörighet

90 hp varav 45 hp inom matematik och/eller informationsteknik.

Rekommenderade förkunskaper

Ingen information tillagd

Utrustning

Ingen information tillagd

Kurslitteratur

Meddelas fyra veckor före kursstart.

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

A, B, C, D, E, FX, F

Examination

  • LAB1 - Laborationsuppgifter, 3,0 hp, betygsskala: P, F
  • TEN1 - Tentamen, 4,5 hp, betygsskala: A, B, C, D, E, FX, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Datalogi och datateknik

Utbildningsnivå

Avancerad nivå

Påbyggnad

Ingen information tillagd

Kontaktperson

Johan Hoffman, e-post: jhoffman@kth.se

Övrig information

I denna kurs tillämpas EECS hederskodex, se:
http://www.kth.se/eecs/utbildning/hederskodex