DD2437 Artificial Neural Networks and Deep Architectures 7.5 credits

Artificiella neuronnät och djupa arkitekturer

The course serves as a fundamental introduction to computational problems in artificial neural networks (ANNs) and provides more detailed insights into the problem of generalisation, computational nature of supervised as well as unsupervised learning in different network types and deep learning algorithms. The course offers an opportunity to develop the conceptual and theoretical understanding of computational capabilities of ANNs starting from simpler systems and progressively studying more advanced network architectures. An important objective of the course is for the students to gain practical experience of selecting, developing, applying and validating suitable networks and algorithms to effectively address a broad class of regression, classification, temporal prediction, data modelling, explorative data analytics or clustering problems.

Show course information based on the chosen semester and course offering:

Offering and execution

No offering selected

Select the semester and course offering above to get information from the correct course syllabus and course offering.

Course information

Content and learning outcomes

Course contents *

The course is concerned with computational problems in massively parallel artificial neural network (ANN) architectures, which rely on distributed simple computational nodes and robust learning algorithms that iteratively adjust the connections between the nodes heavily using the available data samples. The learning rule and network architecture determine specific computational properties of the ANN. The course offers an opportunity to develop the conceptual and theoretical understanding of computational capabilities of ANNs starting from simpler systems and progressively studying more advanced architectures, and hence exploring the breadth of learning types – from strictly supervised to purely explorative unsupervised mode. The course content therefore includes among others multi-layer perceptrons (MLPs), self-organising maps (SOMs), Boltzmann machines, Hopfield networks and state-of-the-art deep neural networks (DNNs) along with the corresponding learning algorithms. An important objective of the course is for the students to gain practical experience of selecting, developing, applying and validating suitable networks and algorithms to effectively address a broad class of regression, classification, temporal prediction, data modelling, explorative data analytics or clustering problems. Finally, the course provides revealing insights into the principles of generalisation capabilities of ANNs, which underlie their predictive power.

Intended learning outcomes *

After completing the course the student should be able to

  • describe the structure and function of the most common artificial neural network (ANN) types, e.g. multi-layer perceptron, recurrent network, self-organizing maps, Boltzmann machine, deep belief network, autoencoder, and provide examples of their applications
  • explain mechanisms of supervised/unsupervised learning from data and information processing in different ANN architectures, and also account for derivations of the basic ANN algorithms discussed in the course
  • demonstrate when and how deep architectures lead to increased performance in pattern recognition and data mining problems
  • quantitatively analyse the process and outcomes of learning in ANNs, and account for their shortcomings, limitations
  • apply, validate and evaluate suggested types of ANNs in typical small problems in the realm of regression, prediction, pattern recognition, scheduling and optimisation
  • devise and implement ANN approaches to selected problems in pattern recognition, system identification or predictive analytics using commonly available development tools, and critically examine their applicability

in order to

  • obtain an understanding of the technical potential as well as advantages and limitations of today's learning, adaptive and self-organizing systems,
  • acquire the ANN practitioner’s competence to apply and develop ANN based solutions to data analytics problems.

Course Disposition

No information inserted

Literature and preparations

Specific prerequisites *

No information inserted

Recommended prerequisites

The mandatory courses in mathematics, numerical analysis and computer science for D, E, and F-students or the equivalent.

Equipment

No information inserted

Literature

[1] Stephen Marsland. Machine Learning, an Algorithmic Perspective, 2009,CSC-Press.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning., 2016, MIT press.

Additional recommended literature will be provided on the course webpage.


Additional recommended reading will be announced on the course website. 

Examination and completion

Grading scale *

A, B, C, D, E, FX, F

Examination *

  • LAB2 - Laboratory assignments, 4.0 credits, Grading scale: P, F
  • TEN2 - Examination, 3.5 credits, Grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Opportunity to complete the requirements via supplementary examination

A passed individual lab assignment can be credited in later course offerings if the assignment is unchanged (bonus points for other lab assignments will be discarded).

Opportunity to raise an approved grade via renewed examination

If the examination/re-examination is taken in later course offerings, all bonus points will be discarded.

Examiner

Erik Fransén

Pawel Herman

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web DD2437

Offered by

EECS/Intelligent Systems

Main field of study *

Computer Science and Engineering, Information Technology

Education cycle *

Second cycle

Add-on studies

No information inserted

Contact

Pawel Herman e-post: paherman@kth.se

Ethical approach *

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Supplementary information

In this course, the EECS code of honor applies, see:
http://www.kth.se/en/eecs/utbildning/hederskodex