Skip to main content
Till KTH:s startsida Till KTH:s startsida

EF2260 Space Environment and Spacecraft Engineering 6.0 credits

Spacecraft in Earth orbits are exposed to an environment quite different from that encountered on the ground or in the lower atmosphere. This puts certain requirements on the design of spacecraft systems. Aspects of the space environment important for spacecraft engineering are discussed in the course. These include energetic particles and ionising radiation, micrometeorites, spacecraft-plasma interaction and thermal conditions. General principles of spacecraft engineering are overviewed, and two systems are treated in more detail – thermal control and power. Effects of ionising radiation on electronics and other materials are discussed. The course also discusses typical measuring instruments carried on spacecrafts.  

Choose semester and course offering

Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.


For course offering

Autumn 2024 Start 28 Oct 2024 programme students

Application code


Headings with content from the Course syllabus EF2260 (Spring 2019–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

The course consists of lectures and projects.

Lectures cover the following topics: Overview of satellite design and onboard systems. Space environment, Sun, magnetosphere, radiation belts. Radiation effects on materials: physical principles, dose assessment, tolerances. Spacecraft/plasma interaction, charging. Corrosion, micrometeorites.

There will be three projects in the course. You will work in groups on the projects. Each group will concentrate on two projects. The projects are estimated to take about 1 week of work each. Each group prepares a written report and a presentation. The results are presented as a short talk at a seminar at the end of the course.

One project is designing a power supply system for a spacecraft in a given orbit. You will work from estimating the power needs the spacecraft for given application. By making some measurements on the actual solar panel elements and batteries you will dimension these elements for the spacecraft and design a regulation system.

The second project is designing thermal control system for a spacecraft. You will assess the heat balance for a given orbit, make some measurements on material properties and work towards a thermal design of the spacecraft.

The third project will concentrate on the radiation effects, primarily on the electronics. You expose some components to radiation and assess the effects, investigating the dose for permanent damage. This will be compared to the radiation levels encountered by spacecraft around the Earth.

Intended learning outcomes

After the completed course you should

-          develop a knowledge of the environments spacecraft may encounter in various orbits around the Earth, and the constraints this places on spacecraft design. 

-          have an understanding of the spacecraft/plasma interaction processes

-          have a general understanding of the physics behind the radiation effects on various materials

-          know the radiation tolerance ranges for major components, and assess the radiation exposure for a given orbit

-          understand basic operation principles underlying the thermal control system and the power systems in spacecraft

-          be able to roughly dimension the systems for a given orbit

-          have understanding of measurements principles in space

Literature and preparations

Specific prerequisites

Space Physics (EF2240) or equivalent.

For single course students: documented proficiency in English B or equivalent.

Recommended prerequisites

Space Physics (EF2240) or equivalent.

For single course students: documented proficiency in English B or equivalent.


No information inserted


Meddelas vid kursens start.

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F


  • PRO1 - Project, 1.5 credits, grading scale: A, B, C, D, E, FX, F
  • PRO2 - Project, 1.5 credits, grading scale: A, B, C, D, E, FX, F
  • TEN1 - Examination, 3.0 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade

Project reports (2x1.5 credits), and one oral examination (3 credits).

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted


Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

Electrical Engineering, Engineering Physics, Physics

Education cycle

Second cycle

Add-on studies

No information inserted


Mykola Ivchenko (

Supplementary information

In this course, the EECS code of honor applies, see: