The course is about the theoretical foundation of pattern recognition and gives an introduction to technical applications, especially in speech recognition and image or sound classification.
EN2202 Pattern Recognition 7.5 credits
This course has been discontinued.
Last planned examination: Autumn 2017
Decision to discontinue this course:
No information insertedContent and learning outcomes
Course contents
Intended learning outcomes
The participants shall after the course be able to
* design systems and algorithms for pattern recognition (signal classification), with focus on sequences of patterns that are analyzed using, e.g., hidden Markov models (HMM),
* analyse classification problems probabilistically and estimate classifier performance,
* understand and analyse methods for automatic training of classification systems,
* apply Maximum-likelihood parameter estimation in relatively complex probabilistic models, such as mixture density models and hidden Markov models,
* understand the principles of Bayesian parameter estimation and apply them in relatively simple probabilistic models.
Literature and preparations
Specific prerequisites
For single course students: 120 credits and documented proficiency in English B or equivalent
Recommended prerequisites
- SF1901 Probability Theory and Statistics, or equivalent.
- EQ1220 Signal Theory or equivalent is recommended but not required.
Equipment
Literature
Arne Leijon (20xx) Pattern Recognition. KTH. (latest version)
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- INL1 - Home Work, 2.5 credits, grading scale: A, B, C, D, E, FX, F
- TEN1 - Examination, 5.0 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Written exam and compulsory Homework Assignment including Matlab implementation of classifier tools.
Other requirements for final grade
Exam 5p (grade A-F). Homework Assignment 2.5p (A-F). The final grade is a weighted sum of graded performance on the Exam and Homework Assignment, with weight 25 for the exam and 10 for the Homework Assignment.
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.
Further information
Course room in Canvas
Offered by
Main field of study
Education cycle
Add-on studies
Contact
Supplementary information
All course material in English. Student assignment reports in either Swedish or English.