EQ2800 Optimal Filtering 6.0 credits
This course has been discontinued.
Last planned examination: Autumn 2020
Decision to discontinue this course:
No information inserted
This course gives thorough knowledge of linear estimation theory. The main theme of the course is optimal linear estimation, Kalman and Wiener filtering, which are systematic methods to solve estimation problems with applications in several technical disciplines, for example in telecommunications, automatic control and signal processing but also in other disciplines, such as econometrics and statistics.The course also provides an introduction to optimal filtering for non-linear systems.
The course is directed towards the students who intend to work with development and research within these fields.
Content and learning outcomes
Course contents
This course gives thorough knowledge of linear estimation theory. The main theme of the course is optimal linear estimation, Kalman and Weiner filtering, which are systematic methods to solve estimation problems with applications in several technical disciplines, for example in telecommunications, automatic control and signal processing but also in other disciplines, such as econometrics and statistics.The course also provides an introduction to optimal filtering for non-linear systems. The course assumes familiarity with basic concepts from matrix theory, stochastic processes, and linear systems theory. The course is directed towards the students who intend to work with development and research within these fields.
The following topics are covered; Basic estimation theory, time discrete and time continuous Wiener filters, time discrete Kalman filters, properties of Wiener and Kalman filters, smoothing, Extended Kalman filters, sigma-point filters and particle filters.
Intended learning outcomes
After successfully completing the course, the student should be able to
- Understand to which type of estimation problems linear estimation can be applied.
- Understand the relationship between computational complexity, filter structure, and performance.
- Understand the relationship between optimal filtering, linear estimation, and Wiener/Kalman filtering.
- Approach estimation problems in a systematic way.
- Compute, analyze, and modify state space models.
- Derive and manipulate the time discrete and time continuous Wiener filter equations and compute the Wiener filter for a given estimation problem.
- Derive and manipulate the time discrete Kalman filter equations and compute the Kalman filter for a given estimation problem.
- Analyze properties of optimal filters.
- Implement Wiener and Kalman filters (time discrete) and state space models using Matlab.
- Simulate state space models and optimal filters, analyze the results, optimize the filter performance, and provide a written report on the findings.
- Know about common methods for optimal filtering in the case of non-Gaussian noise or non-linear models, such as Extended Kalman filter, sigma point filtering and particle filtering.
Course disposition
Lectures, weekly homework assignments and a smaller project assignment to be presented in the form of a technical report.
Literature and preparations
Specific prerequisites
180hp and English B or equivalent
Recommended prerequisites
EQ2300 Digital Signal Processing – grade above pass
Equipment
Literature
Linear Estimation, Kailath, Sayed, Hassibi
Additional material on non-linear filtering will be distributed.
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- PRO1 - Project Assignment, 1.0 credits, grading scale: P, F
- TENA - Exam, 5.0 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
The course requires significant individual effort. Solving the homework problems require good familiarity with the theory but also an ability to formulate a practical problem using suitable mathematical modles and applying the theory to these. The written presentation of solutions and project also provide training in the ability to formulate logical arguments in a way that is considered valid in scientific publications.
Other requirements for final grade
- Individually solved homework assignments every week and a completementary exam if the homework has not been solved satisfactory (TEN1).
- A project assignment presented in the form of a technical report (PRO1)
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.
Further information
Course web
Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.
Course web EQ2800Offered by
Main field of study
Education cycle
Add-on studies
Contact
Supplementary information
Given in period 1 every even year.