• Svenska

# EQ2810 Estimation Theory, Accelerated Program Course 6.0 credits

This is an introductory course to statistical estimation theory given from a signal processing perspective. The course covers fundamental concepts such as sufficient statistics, the Rao-Blackwell theorem and the Cramer-Rao lower bound on estimation accuracy. Furthermore, the most common estimation methods are treated, including maximum likelihood, least-squares, minimum variance and Bayesian estimation.

This is a graduate level course that can be taken by undergraduate students who are admitted. There are two versions of the course, 6 and 12 ECTS.

### Choose semester and course offering

Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.

## Application

### For course offering

Autumn 2023 Start 28 Aug 2023 programme students

### Application code

50780

Headings with content from the Course syllabus EQ2810 (Spring 2019–) are denoted with an asterisk ( )

## Content and learning outcomes

### Course contents

Introduction, minimum variance estimation, Cramer-Rao bound. General minimum variance and best linear unbiased estimation. Maximum likelihood estimation, least squares, method of moments, Bayesian estimation. Extensions for complex data and parameters.

### Intended learning outcomes

This is an introductory course to statistical estimation theory given from a signal processing perspective. The aim is to provide the basic principles and tools which are useful to solve many estimation problems in signal processing and communications. It will also serve as the necessary prerequisite for more advanced texts and research papers in the area. The course will cover fundamental concepts such as sufficient statistics, the Rao-Blackwell theorem and the Cramer-Rao lower bound on estimation accuracy. Furthermore, the most common estimation methods are treated, including maximum likelihood, least-squares, minimum variance, method of moments and Bayesian estimation. The course assumes some familiarity with basic matrix theory and statistics.

## Literature and preparations

### Specific prerequisites

For single course students: 180 credits and documented proficiency in English B or equivalent

### Recommended prerequisites

EQ2300 Digital Signal Processing grade 4 or 5 and the permission of the examiner.
EQ2820 Matrix Algebra, accelerated program is recommended but not required.

### Equipment

No information inserted

### Literature

"Fundamentals of Statistical Signal Processing: Estimation Theory," Kay, Steven M. ISBN 0133457117.

## Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

A, B, C, D, E, FX, F

### Examination

• LAB1 - Laboratory Work, 1.5 credits, grading scale: P, F
• TEN1 - Examination, 4.5 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

### Other requirements for final grade

Attending the lectures is mandatory
Homework assignments oral examination (not required if the homeworks are correct) project assignment.

### Opportunity to complete the requirements via supplementary examination

No information inserted

### Opportunity to raise an approved grade via renewed examination

No information inserted

### Ethical approach

• All members of a group are responsible for the group's work.
• In any assessment, every student shall honestly disclose any help received and sources used.
• In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

## Further information

### Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

### Main field of study

Electrical Engineering

Second cycle