The course contents includes:
• Introduction to Data Mining
• Frequent Itemsets
• Finding Similar Items
• Clustering
• Recommendation Systems
• Mining Data Streams
• Dimensionality Reduction
• Large-Scale Machine Learning
• Overview of the current research in data mining and its connection to other relevant research areas.
FID3016 Data Mining 7.5 credits
Information per course offering
Information for Autumn 2024 Start 28 Oct 2024 programme students
- Course location
KTH Kista
- Duration
- 28 Oct 2024 - 13 Jan 2025
- Periods
- P2 (7.5 hp)
- Pace of study
50%
- Application code
50918
- Form of study
Normal Daytime
- Language of instruction
English
- Course memo
- Course memo is not published
- Number of places
Places are not limited
- Target group
- No information inserted
- Planned modular schedule
- [object Object]
- Schedule
- Part of programme
- No information inserted
Contact
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus FID3016 (Spring 2019–)Content and learning outcomes
Course contents
Intended learning outcomes
The course studies fundamentals of data mining, data stream processing, and machine learning algorithms for analyzing very large amounts of data. We will use big data processing platforms, such as MapReduce, Spark and Apache Flink, for implementing parallel algorithms, as well as computation systems for data stream processing, such as Storm and InfoSphere. The course also considers current research topics in data mining with a focus on mining of very large amounts of data.
After this course, students will be able to mine different types of data, e.g., high-dimensional data, graph data, and infinite/never-ending data (data streams); as well as to program and build data-mining applications. They are also expected to know how to solve problems in real-world applications, e.g., recommender systems, association rules, link analysis, and duplicate detection. They will master various mathemathical techniques, e.g., linear algebra, optimization, and dynamic programming. Moreover, students should be able to describe and apply current research trends in data mining (including methods, algorithms, language support and tools).
Literature and preparations
Specific prerequisites
Recommended prerequisites:
Acquaintance with concepts and terminology associated with statistics, database systems, and machine learning; a course on data structures, algorithms, and discrete math (such as ID1020 Algorithms and Data Structures); a course in software systems, software engineering, and programming languages; a course on processing, storing and analyzing massive data (such as ID2221 Data-Intensive Computing).
Recommended prerequisites
Recommended prerequisites:
Acquaintance with concepts and terminology associated with statistics, database systems, and machine learning; a course on data structures, algorithms, and discrete math (such as ID1020 Algorithms and Data Structures); a course in software systems, software engineering, and programming languages; a course on processing, storing and analyzing massive data (such as ID2221 Data-Intensive Computing).
Equipment
Literature
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- EXA1 - Examination, 7.5 credits, grading scale: P, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Other requirements for final grade
Approved written examination, approved assignments, and approved application of current research (in the form of using it for a research paper, report, or project, etc).
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.