Skip to main content

Before choosing course

The course covers the theoretical background and some practical experience on acoustic and vibration finite element and boundary element analysis. Modelling of damping in response predictions.

Choose semester and course offering

Choose semester and course offering to see information from the correct course syllabus and course offering.

* Retrieved from Course syllabus SD2175 (Autumn 2018–)

Content and learning outcomes

Course contents

Introduction to numerical methods in engineering. Mathematical models versus numerical models. Finite difference method. Galerkins method and method of weighted residuals. Simple elements. Stiffness method. Element formulations. Coordinate transformations. Isoparametry. Numerical interpolation. Convergence properties for dynamic problems. Hierarchical elements. Direct and iterative solvers. Eigenvalue analysis. Modal superposition. Integral equations. Examples of acoustic radiation and scattering using BEM. Simple fluid-structure interaction. Response analysis of a coupled problem. Modelling of damping and its effect on the response.

Intended learning outcomes

After completing this course, students should be able to:

  • Explain the key concepts behind numerical methods for acoustics and vibrations, such as finite element and finite difference methods, and discuss them in terms of simplifications, accuracy, performance and validation.
  • Apply numerical theory to acoustics and vibrations problems by implementing it in numerical programs, and perform numerical calculations using computational software such as Matlab and Comsol Multiphysics.
  • Reflect on numerical implementations, choose appropriate modelling approaches and troubleshoot problems that arise.
  • Evaluate and critically judge numerical results in order to suggest improvements from both physical and numerical modelling perspectives.
  • Present the outcome of their work in group discussions, formal oral presentations and written reports.

Course Disposition

No information inserted

Literature and preparations

Specific prerequisites

Basic courses in mathematics and mechanics.

Recommended prerequisites

No information inserted

Equipment

No information inserted

Literature

Kurskompendium: Numeriska metoder inom akustik och vibrationer.

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F

Examination

  • INLA - 4x Assignment & Written report, 6,0 hp, betygsskala: P, F
  • PROA - Project & Oral and Written Report, 3,0 hp, betygsskala: P, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade

Examination, written test (TEN1; 4 university credits), Assignments (INL1; 3 university credits), Computer task, oral defence (INL1, 2 university credits).

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Profile picture Peter Göransson

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web SD2175

Offered by

SCI/Aeronautical and Vehicle Engineering

Main field of study

No information inserted

Education cycle

Second cycle

Add-on studies

SD2165 Acoustical Measurements
SD2150 Experimental Structure Dynamics
SD2155 Flow Acoustics
SD2160 Sound and Vibration, Project Course
SD2170 Energy Methods
SD2180 Non-Linear Acoustics
SD2185 Ultrasonics
SD2190 Vehicle Acoustics and Vibration