### Choose semester and course offering

Choose semester and course offering to see information from the correct course syllabus and course offering.

## Content and learning outcomes

### Course contents

Function, function graph, domain, range. Increasing and decreasing functions, odd and even functions. Inverse functions. The class of elementary functions. Trigonometric functions, exponential and logarithmic functions. Power laws, logarithms. Limits, rules for calculating limits, standard limits. Continuity, theorems on continuous functions. Derivative, rules of differentiation, the mean value theorem,  implicit differentiation, applications: rate of change, linear approximation, tangent, extreme value problems, sketching the graph of a function, l'Hôpital's rule. Taylor's formula with error estimates. Linear differential equations with constant coefficients and their applications. The Riemann integral, primitive functions, the fundamental theorem integral calcolus, variable substitution, integration by parts, partial fractions. Riemann sums, geometric and other applications of integrals, improper integrals, estimates and convergence. Paramterization of curves and arc length. Sequences and series, convergence criteria, the Cauchy integral test. Taylor series.

### Intended learning outcomes

After the course the student should be able to

• use concepts. theorems and methods to solve and present solutions to problems within the parts of one variable calculus described by the course content,
• read and comprehend mathematical text.

### Course Disposition

No information inserted

## Literature and preparations

### Specific prerequisites

Basic requirements.

### Recommended prerequisites

No information inserted

### Equipment

No information inserted

### Literature

No information inserted

## Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

A, B, C, D, E, FX, F

### Examination

• TEN1 - Final Exam, 7,5 hp, betygsskala: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

The examiner decides, in consultation with KTHs Coordinator of students with disabilities (Funka), about any customized examination for students with documented, lasting disability.

Written exam.

### Opportunity to complete the requirements via supplementary examination

No information inserted

### Opportunity to raise an approved grade via renewed examination

No information inserted

### Ethical approach

• All members of a group are responsible for the group's work.
• In any assessment, every student shall honestly disclose any help received and sources used.
• In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

## Further information

### Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web SF1673

SCI/Mathematics

Technology

First cycle