SH2772 Chemistry and Physics of Nuclear Fuels 8.0 credits

Chemistry and Physics of Nuclear Fuels

Show course information based on the chosen semester and course offering:

Offering and execution

No offering selected

Select the semester and course offering above to get information from the correct course syllabus and course offering.

Course information

Content and learning outcomes

Course contents *

General theory and its application on nuclear materials will be interleaved throughout the run of the course. Since the students may have varying need to refresh some concepts fundamental to the course, such as different nuclear reactor designs or general university chemistry, those parts will largely be in the form of self-studies. The lectures will center on how such knowledge can be complemented and extended to describe less common materials under extreme conditions and explain complex physico-chemical processes in the reactor core. The lectures will also detail the principles and methods for fuel manufacture and reprocessing.

Intended learning outcomes *

The thermal, mechanical and neutronic properties of nuclear fuels and associated materials are covered in most common textbooks and nuclear engineering courses. In contrast, the inorganic and physical chemistry of the fuel materials is often neglected or explained using rules of thumb that have proven useful for traditional reactor designs. With the ongoing development of new reactor types, unorthodox fuel materials, non-aqueous coolants and higher operating temperatures, it will be necessary to have proper understanding of the principles and mechanisms governing the changes in and reactions between materials under extreme conditions and in untested combinations. This course aims to bridge the gap between basic university-level chemistry and advanced treatises on some particular aspect of nuclear fuel chemistry.

On completion of the course, students should be able to estimate solubilities and migration of materials in ceramic and metallic fuels, evaluate their thermo-chemical properties, identify realistic production methods for advanced fuels, predict chemical reactions between different materials in the reactor core, select suitable combinations of fuel, cladding and coolant for use in novel reactor types, distinguish between several important forms of corrosion and evaluate the potential for their appearance, perform simple calculations of mechanical and thermal stress in fuel rods and the associated limits of reactor operation, identify the major safety issues that emerge with increasing burn-up, and calculate yields and purities in refining and reprocessing.

Course Disposition

No information inserted

Literature and preparations

Specific prerequisites *

"Subatomär fysik 6 hp" or corresponding studies in radioactive decay and nuclear fission.
It is further assumed that the students have some previous higher-level education in the fields of general, inorganic and physical chemistry. However, as it is to some extent possible to compensate by ambitious self-studies of the provided reading material, students will be admitted without a formal evaluation of their chemistry skills.

Recommended prerequisites

No information inserted

Equipment

No information inserted

Literature

Kurskompendium samt utvalda översiktsartiklar, rapporter och utdrag ur tekniska handböcker.

Examination and completion

Grading scale *

A, B, C, D, E, FX, F

Examination *

  • HEM1 - Home Exercise, 2.0 credits, Grading scale: P, F
  • SEMA - Seminars, 2.0 credits, Grading scale: P, F
  • TENA - Examination, 2.0 credits, Grading scale: A, B, C, D, E, FX, F
  • TENB - Examination, 2.0 credits, Grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade *

Presentation in the form of a seminar
Written and/or oral examination
Active participate in all course meetings is meriting.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Janne Wallenius

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web SH2772

Offered by

SCI/Physics

Main field of study *

Chemical Science and Engineering, Engineering Physics

Education cycle *

Second cycle

Add-on studies

No information inserted

Contact

Mikael Jolkkonen, jolkkonen@neutron.kth.se

Ethical approach *

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.