• Svenska

# AF2024 Finite Element Methods in Analysis and Design 7.5 credits

This course deals with the finite element method and its applications to solve practical engineering problems.

The aim of this course is to give basic knowledge about the Finite Element Method including element formulations, numerical solution procedures and modelling details. The course will also give the students the ability to use commercial FE-packages for the solution of practical problems in Infrastructure and Civil engineering.

### For course offering

Spring 2025 Start 17 Mar 2025 programme students

### Target group

No information inserted

P4 (7.5 hp)

17 Mar 2025
2 Jun 2025

50%

Normal Daytime

English

KTH Campus

Min: 10

## Application

### For course offering

Spring 2025 Start 17 Mar 2025 programme students

60032

## Contact

### For course offering

Spring 2025 Start 17 Mar 2025 programme students

### Examiner

No information inserted

### Course coordinator

No information inserted

### Teachers

No information inserted
Headings with content from the Course syllabus AF2024 (Autumn 2021–) are denoted with an asterisk ( )

## Content and learning outcomes

### Course contents

- Introduction to continuum mechanics

- Basic concepts: discretization, interpolation, elements, nodes and degrees-of-freedom

─ Stiffness method, simple 1D elements (trusses and beams)

─ Properties of stiffness matrices

─ Assembly and solution procedures

─ Stationary principles, basic elements for structural mechanics

─ The isoparametric formulation

─ Plate bending and shell elements

─ Coordinate transformation and constraints

─ Quality of FE-solutions

─ Introduction to advanced finite element modelling

─ Commercial FE-programs for analysis

─ Modelling of pavement and geostructures

### Intended learning outcomes

The aim of this course is to give basic knowledge about the Finite Element Method including element formulations, numerical solution procedures and modelling details. The course will also give the students the ability to use commercial FE-packages for the solution of practical problems in Infrastructure and Civil engineering. After this course, the student will be able to:

─ Understand the basic theory behind the finite element method

─ Use the finite element method for the solution of practical engineering problems

─ Use a commercial FE-package

The course is also aimed at providing the necessary theoretical and practical background for more advanced studies within the field of finite elements and structural mechanics.

## Literature and preparations

### Specific prerequisites

Documented knowledge in Structural Mechanics and Structural Engineering equivalent to at least 3·times 7,5 ECTS corresponding to the content in courses AF1006, AF1005 and AF2003. And knowledge in MATLAB-programming corresponding to the content in course SF1516 Numerical Methods and Basic Programming.

Eng B/6 according to the Swedish upper secondary school system.

### Recommended prerequisites

Documented knowledge in Differential Equations corresponding to the content in course SF1676 Differential Equations with Applications.

### Equipment

No information inserted

### Literature

No information inserted

## Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

A, B, C, D, E, FX, F

### Examination

• TEN1 - Examination, 4.0 credits, grading scale: A, B, C, D, E, FX, F
• ÖVN1 - Exercises, 3.5 credits, grading scale: P, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

ÖVN1 (compulsory exercises 3,5 ECTS credits)

TEN1 (tentamen 4 ECTS credits)

### Opportunity to complete the requirements via supplementary examination

No information inserted

### Opportunity to raise an approved grade via renewed examination

No information inserted

### Ethical approach

• All members of a group are responsible for the group's work.
• In any assessment, every student shall honestly disclose any help received and sources used.
• In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

## Further information

### Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

### Main field of study

Built Environment

Second cycle