EG2210 Electricity Market Analysis 7.5 credits

Elmarknadsanalys

The course “Electricity Market Analysis” provides students with an advanced knowledge of the theory of liberalized electricity markets. The course starts with introductions to fundamental concepts in microeconomics, electricity networks. It then provides an overall overview of the liberalized power markets. During the course, students employ different optimization and equilibrium approaches to analyze variety of electricity market issues. The course is recommended for students with electrical engineering, economics, or mathematics background.

  • Education cycle

    Second cycle
  • Main field of study

    Electrical Engineering
  • Grading scale

    A, B, C, D, E, FX, F

Course offerings

Intended learning outcomes

The aim of the course is that the students learn methods and models for how the price is formed in an electricity market. The course comprises background information about possible ways to design an electricity market, impact from congestions, treatment of externalities such as methods to limit emissions, risk analysis and market power. Applied optimization is shown to be one suitable method to simulate market behaviour.

To pass the course, the students should show that they are able to:

•    describe the principles of how an electricity market can be organised,

•    describe treatment of flexible load,

•    describe methods to handle congestion in power markets,

•    describe methods for analyzing prices in markets with limited competition,

•    describe basic methods for financial risk management in power markets,

•    describe methods to handle externalities, such as environmental problems, in electricity markets,

•    perform calculations of pricing in small systems with one of the above characteristics.

To receive a higher grade students should also show that they are able to:

•    analyze pricing in larger power systems with combinations of several of the above named characteristics,

•    apply methods for analyzing the trade off between low prices and reliability in larger power systems,

•    formulate market simulation problems with mathematical expressions,

•    analyze investment dynamics in electricity markets.

Course main content

•    Introduction to electricity networks

◦         Introduction to electric power systems

◦         Introduction to microeconomics

◦         Introduction to electricity markets

•    Optimal dispatch

◦         Efficient dispatch of electricity generation with no transmission constraints

◦         Market-based dispatch of electricity generation with no transmission constraints

◦         Efficient dispatch of electricity generation with transmission constraints

◦         Nodal-Zonal-Regional pricing

•    Managing risk

◦         Basic concepts

◦         Hedging with no transmission constraints

◦         Introduction to electricity markets

•    Market power

◦         Introduction to market power

◦         Market power, nodal pricing, and transmission congestion

◦         Market power in wind-integrated power systems

◦         Measuring, forecasting, and mitigating market power

•    The generation investment decision

◦         Efficient investment in electricity generation

◦         Market-based investment in electricity generation

•    Transmission regulation, investment, and planning

◦         Introductory concepts

◦         Efficient coordination of transmission and generation investment

◦         Is there a role for market-based transmission investment?

◦         The transmission planning problem

◦         The transmission regulation problem

•    Electricity Market Lab

◦         Workshop on PLEXOS for Power Systems

◦         A series of home projects on different electricity market issues

▪         CO2 market and Financial Markets

▪         Market power and game theory

▪         Optimal Power Flow and Zonal/Nodal Pricing

▪         Hydro Power Planning

▪         Generation and Transmission Planning

▪         Transmission pricing

Disposition

The theory part of this course is run in lecture-based mode. There are some topics that students learn in project-based learning (PBL) mode. The Plexos software is used for the PBL part.

Eligibility

• SF1625 Calculus in one variable (or equivalent)

• MJ1520 Statistics and risk assessment or SF1901 Probability theory and statistics (or equivalent)

• English B/English 6 (or equivalent)

Recommended prerequisites

Optimisation theory (for example SF1811/SF1861 Optimization)

Literature

The main literature of this course is:

(1) D. R. Biggar, M. R. Hesamzadeh, “The Economics of Electricity Markets”, IEEE-Wiley Press, August 2014

The complementary literatures are:

(2) L. Söder, “Electricity Market Analysis”, Compendium, KTH Publishing house.

(3) Reading list

Examination

  • TENA - Exam, 7.5, grading scale: A, B, C, D, E, FX, F

Offered by

EECS/Electrical Energy Engineering

Examiner

Mohammad Hesamzadeh <mrhesamzadeh@ee.kth.se>

Add-on studies

EG2220 Power Generation, environment and markets

Version

Course syllabus valid from: Spring 2019.
Examination information valid from: Spring 2019.